期刊文献+

机器学习在脊柱疾病智能诊治中的应用综述 被引量:6

Review on Intelligent Diagnosis of Spine Disease Based on Machine Learning
下载PDF
导出
摘要 脊柱疾病是现代社会中常见疾病之一,目前其诊断与治疗主要依赖于医生的专业水平和临床经验,这样不仅给医生带来沉重负担,而且效率低下。以神经网络为代表的机器学习算法能够自动提取脊柱数据集中的特征信息,辅助医生快速定位病灶区域,实现精准治疗。文中从实验数据、特征选择、算法模型和性能评估指标等方面,对机器学习技术在脊柱疾病应用中的研究现状进行了系统总结。首先从机器学习算法角度出发,阐述典型算法在疾病诊治中的用途;其次围绕实际应用,从危险因素分析和疾病预测、疾病识别和分类、脊柱图像的特征提取和分割3方面,结合具体实验对比机器学习模型的性能;最后总结目前应用中存在的局限性并提出展望。 Spine diseases are prevalent in modern society.The diagnosis and treatment mainly depend on doctors’professional knowledge and clinical experience.More and more patients and conventional treatments resulted in heavy overload and inefficient diagnosis.Machine learning algorithms can automatically extract useful information from datasets and images,assisting doctors to locate the lesion and carry out the accurate treatment.This paper focuses on the applications of machine learning in the field of spine disease and summarizes the relevant research from aspects of datasets,feature selection,model,evaluation metrics,and so on.Firstly,in terms of machine learning algorithms,the utility of some typical algorithms in disease diagnosis and treatment is described.Moreover,in terms of the actual applications of disease diagnosis and treatment(risk factor analysis and disease prediction,disease recognition and classification,feature extraction of spine image and image segmentation),the performances of several important models are compared in some specific experiments.Accuracy,specificity,sensitivity,AUC,and other evaluation indexes are involved.Finally,the major limitations and corresponding issues in current applications are summarized.
作者 刘彤彤 杨环 西永明 郭建伟 潘振宽 黄宝香 LIU Tong-tong;YANG Huan;XI Yong-ming;GUO Jian-wei;PAN Zhen-kuan;HUANG Bao-xiang(College of Computer Science and Technology,Qingdao University,Qingdao 266071,China;The Affiated Hospital of Qingdao University Spine Surgery,Qingdao 266000,China)
出处 《计算机科学》 CSCD 北大核心 2021年第S02期597-607,共11页 Computer Science
基金 国家自然科学基金青年项目(61602269) 中国博士后科学基金(2017M622136) 山东省重点研发计划(公益类专项)(2019GGX101021)。
关键词 机器学习 神经网络 脊柱疾病 智慧医疗 研究综述 Machine learning Neural network Spine disease Smart health-care Review
  • 相关文献

参考文献11

二级参考文献146

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
  • 3李颖新,李建更,阮晓钢.肿瘤基因表达谱分类特征基因选取问题及分析方法研究[J].计算机学报,2006,29(2):324-330. 被引量:45
  • 4李建中,杨昆,高宏,骆吉洲,郭政.考虑样本不平衡的模型无关的基因选择方法[J].软件学报,2006,17(7):1485-1493. 被引量:24
  • 5CARBALLIDO G J, BELONGIE S J, MAJUMDAR S. Normalized cuts in 3-D for spinal MRI segmentation [J]. IEEE Trans. on Medical Imaging, 2004, 23(1) : 36-44.
  • 6ZAMORA G, SARI S H, LONG R, et al. Hierarchical segmentation of vertebrae from x-ray images [C]. San Diego, US:Proceedings of the SPIE Conferenee on Medical Imaging, 2003:631-642.
  • 7XU T, CAI X Y. Localization of object(spine) in medical image using active shape models [J].Transactions of Nanjing University of Aeronautics &Astronau, (English Edition), 2003, 20(2): 211-217.
  • 8PENG Z G, ZHONG J, WEE W, et al. Automated vertebra detection and segmentation from the whole spine MR images [C]. Shanghai, China: Proceedings of the IEEE-EMBS 27th Annual International Conference, 2005: 2527-2530.
  • 9WEISS K L, STORRS J M, BANTO R B. Automated spine survey iterative scan technique [J]. Radiology, 2006, 239(1) :255-266.
  • 10COOTES T F, EDWARDS G J, TAYLOR C J. Active appearanee models [C]. Freiburg, Germany,Proceedings of the European Conference on Computer Vision, 1998: 484-498.

共引文献107

同被引文献81

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部