期刊文献+

Transcriptional memory and response to adverse temperatures in plants 被引量:1

原文传递
导出
摘要 Temperature is one of the major environmental signals controlling plant development,geographical distribution,and seasonal behavior.Plants perceive adverse temperatures,such as high,low,and freezing temperatures,as stressful signals that can cause physiological defects and even death.As sessile organisms,plants have evolved sophisticated mechanisms to adapt to recurring stressful environments through changing gene expression or transcriptional reprogramming.Transcriptional memory refers to the ability of primed plants to remember previously experienced stress and acquire enhanced tolerance to similar or different stresses.Epigenetic modifications mediate transcriptional memory and play a key role in adapting to adverse temperatures.Understanding the mechanisms of the formation,maintenance,and resetting of stress-induced transcriptional memory will not only enable us to understand why there is a trade-off between plant defense and growth,but also provide a theoretical basis for generating stress-tolerant crops optimized for future climate change.In this review,we summarize recent advances in dissecting the mechanisms of plant transcriptional memory in response to adverse temperatures,based mainly on studies of the model plant Arabidopsis thaliana.We also discuss remaining questions that are important for further understanding the mechanisms of transcriptional memory during the adverse temperature response.
出处 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第10期791-804,共14页 浙江大学学报(英文版)B辑(生物医学与生物技术)
基金 This work was supported by the National Natural Science Foundation of China(No.31970534) the Fundamental Research Funds for the Central Universities(No.2019QNA6014),China.
  • 相关文献

参考文献6

二级参考文献55

  • 1Ahemad, M., Kibret, M., 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current per-spective. J. King Saud Univ.-Sci., 26(1):1-20. [doi:10. 1016/j.jksus.2013.05.001 ].
  • 2Bita, C.E., Gerats, T., 2013. Plant tolerance to high tempera- ture in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci., 4:273. [doi:10.3389/fpls.2013.00273].
  • 3Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal, Biochem., 72(1-2):248-254. [doi: 10.1016/0003-2697(76)90527-3].
  • 4Claeys, H., Bodt, S.D., Inzd, D., 2014. Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends Plant Sci., 19(4):231-239. [doi: 10.1016/j.tplants. 2013.10.001].
  • 5Conrath, U., Beckers, G.J.M., Flors, V., et al., 2006. Priming: getting ready for battle. Mol. Plant-Microbe Inter., 19(10): 1062-1071. [doi: 10.1094/MPMI- 19-1062].
  • 6Contreras-Comejo, H.A., Macias-Rodriguez, L., Cortes: Penagos, C., et al., 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol., 149(3): 1579-1592. [doi:10.1104/pp.108.130369].
  • 7Contreras-Comejo, H.A., Macias-Rodriguez, L., Alfaro- Cuevas, R., et al., 2014. Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and + . . . Na ehnunatlon through root exudates. Mol. Plant-Microbe Inter., 27(6):503-514. [doi:10.1094/MPMI-09-13-0265-R].
  • 8Folsom, J.J., Begcy, K., Hao, X., et al., 2014. Rice Fertilization- Independent Endosperml regulates seed size under heat stress by controlling early endosperm development. Plant Physiol., 165(1):238-248. [doi: 10.1104/pp. 113.232413].
  • 9Fragkostefanakis, S., Rrth, S., Schleiff, E., et al., 2014. Pro- spects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ., 38(9): 1881-1895. [doi:10.1111/pce.12396].
  • 10Hasanuzzaman, M., Nahar, K., Alam, M.M., et al., 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants, lnt. J. Mol. Sci., 14(5):9643-9684. [doi: 10.3390/ijms 14059643].

共引文献107

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部