期刊文献+

仿生促进杂化膜的制备及其性能研究 被引量:1

Preparation and Properties of Biomimetic Transport Hybrid Membrane
下载PDF
导出
摘要 基于人工肺(ECMO)与血液直接接触,提出利用生物相容性良好的材料制备仿生促进杂化膜用于ECMO。在聚醚砜超滤膜上涂覆聚甲基丙烯酸甲酯作为分离层,氧载体选用钴卟啉与咪唑配位的仿血红素结构,制备了一种仿生促进杂化膜,重点考察其在低压环境下对氧气/二氧化碳及氧气/氮气的分离性能。气体渗透性测试结果表明:当聚甲基丙烯酸甲酯(PMMA)质量分数为4.6%、四苯基钴卟啉质量分数为0.460%、压力为0.012 MPa时,制备的CoTPP-PMMA-PES复合膜分离性能较好,此时膜厚度为0.92μm。与PMMA-PES复合膜相比,氧气渗透速率由8.05 GPU升至21.25 GPU,氧气/氮气选择性由1.28升至2.66,氧气/二氧化碳选择性由0.70升至0.92。 Based on the direct contact between ECMO and blood, a biomimetic facilitated transport hybrid membrane with good bio-compatibility was proposed for ECMO. A biomimetic transport hybrid membrane was prepared by coating poly(methyl methacrylate) on polyethersulfone ultrafiltration membrane as separation layer and using cobalt porphyrin and imidazole as oxygen carrier. The separation performance of O2/CO2 and O2/N2 under low pressure was investigated.The results of gas permeability test showed that when the optimal concentration of PMMA was 4.6%, the concentration of Cobalt meso-tetraphenylporphine was 0.460%, and the pressure was 0.012 MPa, the separation performance of CoTPP-PMMA-PES composite membrane was the best,and the membrane thickness was 0.92 μm. Compared with pmma-pes composite membrane, O_(2) permeation rate increased from 8.05 GPU to 21.25 GPU, O_(2)/N_(2) selectivity increased from 1.28 to 2.66, O_(2)/CO_(2) selectivity increased from 0.70 to 0.92.
作者 郭明钢 米盼盼 卞冰 王畅 杨晓航 GUO Ming-gang;MI Pan-pan;BIAN Bing;WANG Chang;YANG Xiao-hang(Panjin Institute of Industrial Technology,Dalian University of Technology,Panjin 124221,China;Shenyang Blower Works Group Auxiliary Equipment Complete Engineering Co.,Ltd.,Shenyang 110869,China)
出处 《精细化工中间体》 CAS 2021年第4期48-53,共6页 Fine Chemical Intermediates
关键词 膜式氧合器 氧气分离 促进传递膜 钴卟啉 仿生 membrane oxygenator oxygen separation facilitated transport membrane cobalt porphyrin biomimic
  • 相关文献

参考文献3

二级参考文献37

  • 1黄德群,陈玉芳.完美的仿生脏器—膜式人工肺[J].医疗保健器具,2005,12(6):56-56. 被引量:7
  • 2毛宁方,石志才.骨水泥在脊柱外科中的应用现状与进展[J].脊柱外科杂志,2006,4(4):239-242. 被引量:14
  • 3Kuehn KD, Ege W, Gopp U. Acrylic bone cements: composition and properties[J]. Orthop Clin North Am, 2005, 36( 1 ) :17-28.
  • 4Lai PL, Chen LH, Chen W J, et al. Chemical and physical prop- erties of bone cement for vertebroplasty[ J]. Biomed J, 2013, 36 (4) : 162-167.
  • 5Kwong FN, Power RA. A comparison of the shrinkage of commer- cial bone cements when mixed under vacuum [ J ]. J Bone Joint Surg Br, 2006, 88 ( 1 ) : 120-122.
  • 6Griza S, Ueki MM, Souza DH, et al. Thermally induced strains and total shrinkage of the polymethyl-methacrylate cement in sim- plified models of total hip arthroplasty[ J]. J Mech Behav Biomed Mater, 2013, 18:29-36.
  • 7Kinzl M, Boger A, Zysset PK, et al. The mechanical behavior of PMMA/bone specimens extracted from augmented vertebrae: a numerical study of interface properties, PMMA shrinkage and tra- becular bone damage[ J]. J Biomech, 2012, 45 (8) : 1475-1484.
  • 8L6pez A, Hoess A, Thersleff T, et al. Low-modulus PMMA bone cement modified with castor oil[ J ]. Biomed Mater Eng, 2011, 21 (5-6) :323-332.
  • 9Lai PL, Tai CL, Chen LH, et al. Cement leakage causes potential thermal injury in vertebroplasty[ J]. BMC Musculoskelet Disord, 2011, 12:116.
  • 10Huang KY, Yah JJ, Lin RM. Histopathologic findings of retrieved specimens of vertebroplasty with polymethylmethacrylate cement: case control study[ J]. Spine ( Phila Pa 1976 ), 2005, 30 ( 19 ) : E585-588.

共引文献19

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部