期刊文献+

基于自学习优化模型的定制化居民需求响应预测研究 被引量:2

Forcasting research of tailored residential demand response based on self⁃learning optimization model
下载PDF
导出
摘要 基于家庭智能电能表采集数据,构建居民需求响应样本库。基于该样本库,开展特征工程,充分挖掘响应用户的家庭属性、响应行为、用电行为等特征。在此基础上,构建居民电力需求响应神经网络自学习优化模型,根据不同家庭标签与历史响应结果数据,预测居民需求响应参与情况,随着典型场景下需求响应的不断开展,对模型进行循环迭代与优化。最终,依据调节目标,智能化制定需求响应调控策略。算例结果表明,所提的需求响应策略能够准确识别居民需求响应参与度,降低需求响应激励成本。 Based on the monitoring data of household smart meters,a sample database of residents’demand response is con⁃structed.Based on the sample database,feature engineering is car⁃ried out to fully mine the characteristics of responsive users,such as family attributes,response behavior and power consumption be⁃havior.On this basis,the self⁃learning optimization model of resi⁃dent power demand response neural network is constructed.Ac⁃cording to the data of different family labels and historical re⁃sponse results,the participation of resident demand response is predicted.With the continuous development of demand response in typical scenarios,the model is iterated and optimized.Finally,according to the regulation objectives,the demand response regula⁃tion strategy is intelligently formulated.Results show that the pro⁃posed demand response strategy can accurately identify the resi⁃dential demand response participation and reduce the demand re⁃sponse incentive cost.
作者 卢婕 刘向向 赵振佐 赵文辉 邓娜娜 王博 LU Jie;LIU Xiangxiang;ZHAO Zhenzuo;ZHAO Wenhui;DENG Nana;WANG Bo(Power Supply Service Management Center,State Grid Jiangxi Electric Power Co.,Ltd.,Nanchang 330001,China;School of Management and Economics,Beijing Institute of Technology,Beijing 100081,China)
出处 《电力需求侧管理》 2021年第6期87-90,共4页 Power Demand Side Management
基金 国网江西省电力有限公司科技项目(52185220000C)。
关键词 居民需求响应 特征工程 自学习优化 定制化响应预测 residential demand response feature engineer⁃ing self⁃learning optimization tailored response prediction
  • 相关文献

参考文献7

二级参考文献72

共引文献157

同被引文献31

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部