摘要
给出复Grassmann流形G(2,n+2)的全实曲面的一种构造方法,也就是把G(2,n+2)看作HP^(n+1)中极小子流形Q^(n+1)的商,并证明G(2,n+2)中的曲面可以水平提升到Q^(n+1)中当且仅当它是全实的。
We present a construction of the complex Grassmannian G(2,n+2)as a quotient of some minimal submanifold Q^(n+1) of HP^(n+1),then show that a surface in G(2,n+2)can be horizontally lifted to Q^(n+1) if and only if it is totally real.
作者
焦晓祥
辛嘉麟
JIAO Xiaoxiang;XIN Jialin(School of Mathematical Sciences, University of Chinese Academy of Sciences,Beijing 100049, China)
出处
《中国科学院大学学报(中英文)》
CSCD
北大核心
2021年第6期729-734,共6页
Journal of University of Chinese Academy of Sciences
基金
the National Natural Science Foundation of China(11871450)。