期刊文献+

复Grassmann流形中全实曲面的构造

Construction of totally real surfaces in complex Grassmannians
下载PDF
导出
摘要 给出复Grassmann流形G(2,n+2)的全实曲面的一种构造方法,也就是把G(2,n+2)看作HP^(n+1)中极小子流形Q^(n+1)的商,并证明G(2,n+2)中的曲面可以水平提升到Q^(n+1)中当且仅当它是全实的。 We present a construction of the complex Grassmannian G(2,n+2)as a quotient of some minimal submanifold Q^(n+1) of HP^(n+1),then show that a surface in G(2,n+2)can be horizontally lifted to Q^(n+1) if and only if it is totally real.
作者 焦晓祥 辛嘉麟 JIAO Xiaoxiang;XIN Jialin(School of Mathematical Sciences, University of Chinese Academy of Sciences,Beijing 100049, China)
出处 《中国科学院大学学报(中英文)》 CSCD 北大核心 2021年第6期729-734,共6页 Journal of University of Chinese Academy of Sciences
基金 the National Natural Science Foundation of China(11871450)。
关键词 GRASSMANN流形 全实曲面 水平提升 Grassmannian totally real surface horizontal lift
  • 相关文献

参考文献1

二级参考文献5

  • 1John Bolton,Gary R. Jensen,Marco Rigoli,Lyndon M. Woodward.On conformal minimal immersions ofS 2 into ?P n[J].Mathematische Annalen.1988(4)
  • 2Kenmotsu,K.On minimal immersions of R2 into Pn(C), J.Math[].Social Science Japan Journal.1985
  • 3Dong,Y. X.On the isotropy of harmonic sequence of surfaces to complex projective spaces, Inter[].Journal of Mathematical.1992
  • 4Wolfson,J. G.Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds, J[].Differential Geometry and Its Applications.1988
  • 5Zandi,A.Minimal immersion of surface in quatemionic projective spaces, Tsukuba J[].Mathematica Journal.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部