期刊文献+

A FAST COMPACT DIFFERENCE METHOD FOR TWO-DIMENSIONAL NONLINEAR SPACE-FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATIONS

原文传递
导出
摘要 This paper focuses on a fast and high-order finite difference method for two-dimensional space-fractional complex Ginzburg-Landau equations.We firstly establish a three-level finite difference scheme for the time variable,followed by the linearized technique of the nonlinear term.Then the fourth-order compact finite difference method is employed to discretize the spatial variables.Hence the accuracy of the discretization is O(τ^(2)+h^(4)_(1)+h^(4)_(2))in L_(2)-norm,where τ is the temporal step-size,both h_(1) and h_(2) denote spatial mesh sizes in x-and y-directions,respectively.The rigorous theoretical analysis,including the uniqueness,the almost unconditional stability,and the convergence,is studied via the energy argument.Practically,the discretized system holds the block Toeplitz structure.Therefore,the coefficient Toeplitz-like matrix only requires O(M_(1)M_(2)) memory storage,and the matrix-vector multiplication can be carried out in O(M_(1)M_(2))(log M_(1)+log M_(2))computational complexity by the fast Fourier transformation,where M_(1) and M_(2) denote the numbers of the spatial grids in two different directions.In order to solve the resulting Toeplitz-like system quickly,an efficient preconditioner with the Krylov subspace method is proposed to speed up the iteration rate.Numerical results are given to demonstrate the well performance of the proposed method.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2021年第5期708-732,共25页 计算数学(英文)
基金 Q.Zhang was partially supported by Natural Science Foundation of Zhejiang Province(Grant No.LY19A010026) Zhejiang Province“Yucai”Project(2019),Natural Science Foundation of China(Grant No.11501514) Fundamental Research Funds of Zhejiang Sci-Tech University(Grant 2019Q072) L.Zhang was partially supported by research from Xuzhou University of Technology(Grant XKY201530) the"Peiyu"Project from Xuzhou University of Technology(Grant XKY2019104) H.Sun was supported in part by research grants of the Science and Technology Development Fund,Macao SAR(File no.0118/2018/A3) MYRG2018-00015-FST from the University of Macao.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部