期刊文献+

基于自适应高斯-厄米特滤波的锂电SOC估算研究 被引量:1

Research on Lithium Ion Battery SOC Estimation Based on Adaptive Gauss-Hermite Filter
下载PDF
导出
摘要 对锂电池荷电状态(state of charge,SOC)进行准确地估算十分重要。由于SOC呈非线性特征,并且受多种因素的动态影响,准确估计困难。本文利用高斯-厄米特滤波(Gauss-Hermite filter,GHF)的思想,结合Thevenin等效电路模型,提出一种自适应高斯-厄米特滤波(adaptive Gauss-Hermite filter,AGHF)算法对SOC实时估计更新。利用MATLAB/Simulink建立仿真模型,并与扩展卡尔曼滤波(extended Kalman filter,EKF)算法及传统的高斯-厄米特滤波算法相比较。通过分析对比可以发现该算法的估算精度较高,可以有效地控制滤波发散。 It is very important to estimate the state of charge(SOC)of a lithium battery accurately.SOC is dynamically affected by many factors.It is difficult to estimate accurately because of the nonlinear characteristics of SOC.An adaptive Gauss-Hermite filter(AGHF)algorithm is proposed to update the SOC real-time estimation,Using the idea of Gauss-Hermite filter(GHF)and Thevenin equivalent circuit model.The simulation analysis show that the algorithm has higher estimation accuracy and can effectively control the filter divergence,which compared with the extended Kalman filter and traditional Gauss-Hermite filter al⁃gorithm in MATLAB/Simulink environment.
作者 张凤博 孙桓五 杨淇 ZHANG Feng-bo;SUN Huan-wu;YANG Qi(Taiyuan University of Technology,College of Mechanical and Vehicle Engineering,Shanxi Taiyuan 030024,China)
出处 《机械设计与制造》 北大核心 2021年第11期147-150,共4页 Machinery Design & Manufacture
基金 山西省科技重大专项项目—重卡燃料电池动力系统及整车集成技术(20181102009)。
关键词 锂电池 荷电状态(SOC) 等效电路模型 自适应高斯-厄米特滤波(AGHF) Lithium Batteries State of Charge(SOC) Equivalent Circuit Model Adaptive Gauss-Hermite Filter(AGHF)
  • 相关文献

参考文献4

二级参考文献24

  • 1程莺,罗禹贡,李克强,连小珉.前向式混合动力系统模型中控制器建模与仿真[J].汽车技术,2005(4):15-19. 被引量:8
  • 2黄文华,韩晓东,陈全世,林成涛.电动汽车SOC估计算法与电池管理系统的研究[J].汽车工程,2007,29(3):198-202. 被引量:79
  • 3夏超英,张术,孙宏涛.基于推广卡尔曼滤波算法的SOC估算策略[J].电源技术,2007,31(5):414-417. 被引量:52
  • 4Aylor JH, Johnson BW. A Battery state-of-charge indicator for E- lectric Wheel chairs [ J ]. 1EEE Transactions on Industrial Elec- tronics 1992, 39:398 -409.
  • 5PENG Yunhui, MIAO Dong, LIU Yunfeng. Applications of square root unscented kalman filter on the state estimation[ C]//Proceed- ings of 2006 Chinese Control and Decision Conference, Tianjin, China. 2006,53 - 56.
  • 6Mohamed AH, Schwarz KP. Adaptive Kalman filtering for INS/ GPS[ J ]. Journal of Geodesy, 1999 ;73 : 193 - 203.
  • 7SUN Fengehun, HU Xiaosong, ZOU Yuan, et al. Adaptive un- scented Kalman filtering for state of charge estimation of a lithium- ion battery for electric vehicles [J]. Energy, 2011,36:3531 - 3540.
  • 8Wan E A, Van Der Merwe R. The square-root unscented Kalman filter for state and parameter estimation[ C ]//2001 IEEE Interna- tional Conference on Acoustics, Speech, and Signal Processing. May 7 - 11, 2001, Salt Lake City, USA. 2001,6:3461-3464.
  • 9PLET'I" Gregory L. Extended Kalman filtering for battery manage- ment systems of LiPB-based HEV battery packs Part 2. Modeling and identification [ J ]. Journal of Power Sources, 2004, 134 (2) : 262 - 276.
  • 10莫志勇,张为公,吉同舟,方东.基于直接转矩控制的先进汽车测试系统[J].电气传动,2009,39(11):7-10. 被引量:2

共引文献82

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部