摘要
对Logistic输入率、非线性发生率的SIRS传染病传播模型进行了研究,考虑了疾病的潜伏期和免疫期两个时滞因素。利用时滞微分方程的稳定性和分支理论,重点研究正平衡点的局部稳定性和Hopf分支。最后通过MATLAB数值模拟验证所得的结论。
The transmission model of SIRS infectious disease with Logistic input rate and nonlinear incidence rate was studied.The latent period and immune period of the disease were considered.By using the stability and bifurcation theory of delay differential equations,the local stability and Hopf bifurcation of positive equilibrium point are studied.Finally,the results are verified by MATLAB numerical simulation.
作者
刘柏林
许友军
王建伟
LIU Bailin;XU Youjun;WANG Jianwei(School of Mathematics and Physics, University of South China, Hengyang, Hunan 421001, China)
出处
《南华大学学报(自然科学版)》
2021年第5期74-79,共6页
Journal of University of South China:Science and Technology
关键词
时滞
平衡点
稳定性
HOPF分支
time delay
the balance point
stability
Hopf bifurcation