期刊文献+

AI时代防空指挥控制系统发展建设 被引量:1

Development and Construction of Air Defense Command&Control System in AI Era
下载PDF
导出
摘要 针对AI时代防空指挥控制系统的智能化建设,系统梳理国内外指挥控制系统智能化发展现状,在坚持肯定成绩、直面问题的前提下,分析AI时代防空指挥控制系统发展建设需求,提出未来系统智能化发展的3个重点方向:态势感知、辅助决策、人机交互上的发展思路。该研究可为发展防空指挥控制系统智能化建设提供参考。 Aiming at the intelligent construction of air defense command and control system in AI era,this paper systematically analyzes the current situation of intelligent development of command and control system at home and abroad,analyzes the development and construction requirements of air defense command and control system in AI era on the premise of affirming achievements and facing problems directly,and puts forward 3 key directions of intelligent development of air defense command and control system in the future:situation awareness,auxiliary decision-making and human-computer interaction.The research can provide reference for the development of intelligent construction of air defense command and control system.
作者 鲍作辉 杨作宾 孙丹华 Bao Zuohui;Yang Zuobin;Sun Danhua(Zhengzhou Campus of Army Artillery&Air Defense Academy,Zhengzhou 450052,China)
出处 《兵工自动化》 2021年第11期20-22,54,共4页 Ordnance Industry Automation
关键词 人工智能 防空指挥控制系统 态势感知 辅助决策 人机交互 artificial intelligence air defense command and control system situational awareness assistant decision human-computer interaction
  • 相关文献

参考文献4

二级参考文献20

  • 1KERR B. DARPA demos Deep Green [EB/OL].( 201 1-04-07) [2016-05-10]. http://www, ftleave worthlamp, com/ article/ 2011040 7 / NEWS/ 3040 7 9884.
  • 2SURDU J R. Deep Green[EB/OL]. (2008-05-08) [2016-05-10]. http://www, darpa, mil.
  • 3SURDU J R, KITTKA K. The Deep Green concept [C]//Proceedings of Spring Simulation Multiconfer- ence 2008 Conference on Military Modelling and Simu- lation Symposium. Ottawa:Spring, 2008 : 623-631.
  • 4SURDU J R, STERRETT J, LUNSFORD J. The gaming debate[J]. Training - Simulation Journal, 2010(12) .- 46-48.
  • 5MilLer G A. The magical number seven, plus or minus two: somelimits on our capacity for processing information [J]. The Psychological Review, 1956,63 : 81-97.
  • 6YANN L C. BENGIO Y, HINTON G. Deep learning [J]. Nature,2015,521(7553) :436-444.
  • 7CLARK L. Google's artificial brain learns to find cat videos[EB/OL]. (2012-06-26)[2016-05-10]. http:// www. wired, com/2012/06/google-x-neural-network/.
  • 8SILVER D , HUANG A, MADDISON C J, et al. Mas- tering the game of go with deep neural networks and tree search[J]. Nature, 2016,529(7587) :484-489.
  • 9MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,518(7540) :529-533.
  • 10LAKE B M, SALAKUTDINOV R, TENENBAUM J B. Human-level concept learning through probabilistie program induction [J]. Science, 2015, 350 (6266) : 1332-1338.

共引文献95

同被引文献31

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部