期刊文献+

一种面向光纤网络路径优化的机器学习改进算法 被引量:8

An improved machine learning algorithm for optical fiber network path optimization
下载PDF
导出
摘要 针对光纤网络通信中数据流传输路径质量影响网络资源利用率的问题,提出了一种改进的数据传输路径优化机器学习算法。首先,利用机器学习完成对初始数据的预处理,获取数据特征信息,完成数据流分类。基于对光纤跨度内数据流的分析,构建集群组完成数据路径的调整,实现网络资源的充分利用。其次,以包含特征参数的相似矩阵为约束条件,完成聚类分析的优化。根据数据特征参数建立相似矩阵,并在特征参数与通信路径的数据流类型之间建立函数映射关系。最后利用核函数对传输路径进行优化,实现网络传输路径的优化。实验针对包含多个光纤跨度的网络进行路径优化,并与传统的K-means聚类算法对比。测试中6种不同数据流的比例可以充分反映不同条件下的数据通信状态。实验结果表明:该算法的分类准确率为94.6%,平均执行时间为12.8 s,平均聚类变化度为31.3%。传统的K-means聚类算法分类准确率为84.6%,平均执行时间为20.8 s,平均聚类变化为46.2%。该算法的收敛时间也优于传统算法,其在网络数据传输中具有更高的准确性和实时性。 Aiming at the problem that the quality of the data stream transmission path in optical fiber network communication affected the utilization of network resources,an improved data transmission path optimization machine learning algorithm was proposed.Firstly,the machine learning was used to complete the preprocessing of the initial data,the data feature information was obtained,and the data stream classification was completed.Based on the analysis of the data flow within the optical fiber span,a cluster group was constructed to complete the adjustment of the data path and realize the full use of network resources.Secondly,the optimization of the cluster analysis was completed by taking the similarity matrix containing the characteristic parameters as the constraint condition.The similarity matrix was established according to the data characteristic parameters,and the function mapping relationship was established between the characteristic parameters and the data flow type of the communication path.Finally,the kernel function was used to optimize the transmission path to realize the optimization of the network transmission path.The experiment optimized the path for a network containing multiple fiber spans,and compared it with the traditional K-means clustering algorithm.The ratio of the 6 different data streams in the test can fully reflect the data communication status under different conditions.The experimental results show that the classification accuracy of the algorithm is 94.6%,the average execution time is12.8 s,and the average cluster change degree is 31.3%.The classification accuracy of the traditional K-means clustering algorithm is 84.6%,the average execution time is 20.8 s,and the average clustering change is 46.2%.The convergence time of this algorithm is also better than that of traditional algorithms,and it has higher accuracy and real-time performance in network data transmission.
作者 王文君 徐娜 Wang Wenjun;Xu Na(School of Engineering Management,Shanxi Vocational University of Engineering and Scientific,Jinzhong 030619,China;School of Art,Yanching Institute of Technology,Langfang 065201,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2021年第10期326-331,共6页 Infrared and Laser Engineering
基金 国家自然科学基金(61703056) 河北省高等学校科学研究项目(SQ202041)。
关键词 路径优化 机器学习 聚类算法 数据特征 传输特性 path optimization machine learning clustering algorithm data characteristics transmission characteristics
  • 相关文献

参考文献7

二级参考文献49

  • 1杨志恒.基于Ward法的区域空间聚类分析[J].中国人口·资源与环境,2010,20(S1):382-386. 被引量:49
  • 2Goh K M, Tjahjono B, Baines T, et al. A review of research in manufacturing prognostics[C]// Proc. of the IEEE Interna- tional Conference on Industrial In f ormatics ,2006:417 - 422.
  • 3Link C J. Neural networks for model-based prognostics [C]// Proc. of the IEEE Aerospace Conference, 1999 : 21 - 28.
  • 4Zhang S, Ganesan R. Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery [J]. Journal of Engineering for Gas Turbines and Power,1997,119 (2) :378 - 384.
  • 5Wang P, Vachtsevanos G. Fault prognostics using dynamic wavelet neural networks[J]. Artificial Intelligence for Engineering Design Analysis and Manufacturing, 2001, 15(4) : 349 - 365.
  • 6Wang W Q, Golnaraghi M F, Ismail F. Prognosis of machine health condition using neuro-fuzzy systems[J]. Mechanical Sys- tems and Signal Processing ,2004,18(4) :813 - 831.
  • 7Deh W. Time series prediction for machining errors using support vector regression[C]// Proc. of the 1st International Conference on Intelligent Networks and Intelligent Systems, 2008 : 27 - 30.
  • 8Tipping M E. Sparse Bayesian learning and the relevance vector machine [ J ]. Journal of Machine Learning Research, 2001, 1(3) :211 -244.
  • 9Tipping M E. The relevance vector machine[C]// Proc. of the Advances in Neural Information Processing Systems, 2000: 652 -658.
  • 10Bishop C M, Tipping M E. Variational relevance vector machines[C]// Proc. of the Uncertainty in Artificial Intelligence Process- ings ,2000:46 - 53.

共引文献69

同被引文献114

引证文献8

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部