期刊文献+

基于智能传感器技术的列车轴温监测系统的研究

Research on train axle temperature monitoring technology based on intelligent sensor technology
下载PDF
导出
摘要 提出了一种基于智能传感器技术的铁路轴温监测系统。引入灰度模型算法结合最小二乘法偏移原理,提出了融合权重参数的二乘灰度模型列车轴温分析及预警算法,有效解决了原始算法于极值点大概率误差过大的问题,提升了短时间预测的准确度。对比实验结果显示,该算法可以有效监测列车轴温,故障预警的准确率对比其他算法平均提高了7%左右,平均误差小于2%,具备较高的工程研究及应用推广价值。 A railway axle temperature monitoring technology based on intelligent sensor technology is proposed.By collecting the changes of axle temperature in real time,introducing the gray model algorithm and the least square offset principle,a double gray model train axle temperature analysis and early warning algorithm integrating weight parameters is established.The algorithm has small samples and high execution efficiency.It effectively solves the problem that the probability error of the original algorithm at the extreme point is too large,and improves the accuracy of short-time prediction.Comparative experiments show that the algorithm proposed in this paper can effectively monitor the train axle temperature.Compared with other algorithms,the accuracy of fault early warning is improved by about 7%on average,and the average error is less than 2%.The effect is improved obviously.It has high engineering research and application value.
作者 贾刚 傅霖煌 赖远桥 Jia Gang;Fu Linhuang;Lai Yuanqiao(China Energy Railway Equipment Company Limited Shaanxi Branch,Shaanxi Shenmu,719316,China;Shenzhen Invengo Information Technology Co.,Ltd.,Guangdong Shenzhen,518052,China)
出处 《机械设计与制造工程》 2021年第10期59-62,共4页 Machine Design and Manufacturing Engineering
关键词 货运列车 灰度模型 最小二乘法 轴温监测 故障预警 freight train gray scale model least square method shaft temperature monitoring fault early warning
  • 相关文献

参考文献1

二级参考文献21

  • 1徐波,唐海龙,李行善.基于DTW的涡扇发动机气路故障定量诊断方法[J].北京航空航天大学学报,2004,30(6):524-528. 被引量:10
  • 2孙博,康锐,谢劲松.故障预测与健康管理系统研究和应用现状综述[J].系统工程与电子技术,2007,29(10):1762-1767. 被引量:168
  • 3KEOGH E, RATANAMAHATANA C A. Exact indexing of dynamic time warping[J]. Knowledge and Information Systems, 2005, 7(3).. 358-386.
  • 4ZHEN D, WANG T, GU F, et al. Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping[J]. Mechanical Systems and Signal Processing, 2013, 34(1/2): 191-202.
  • 5BLACKBURN J, RIBEIRO E. Human motion recognition using isomap and dynamie time warping[C]//ELGAMMAL A, ROSENHAHN B, KLETTE R. Human Motion-Understanding, Modeling, Capture and Animation. Berlin: Springer, 2007: 285-298.
  • 6GILLIAN N, KNAPP R B, O'MODHRAIN S. Recognition o1 multivariate temporal musical gestures using n-dimensional dynamic time warping[C]//JENSENIUS A R, TVEIT A, GODOY R I, et al. llth International Conference on New Interfaces for Musical Expression. Trier : DBLP, 2011 : 337-342.
  • 7JUN B H. Fault detection using dynamic time warping(DTW) algorithm and discriminant analysis for swine wastewater treatment[J]. Journal of Hazardous Materials, 2011, 185(1):.
  • 8ISLAM M S, HANNAN M A, BASRI H, et al. Solid waste bin detection and classification using dynamic time warping and MLP classifier[J]. Waste Management, 2014, 34 (2) : 281-290.
  • 9RATH T M, MANMATHA R. Word image matching using dynamic time warping[C]//lEEE. CVPR 2003. Now York: IEEE, 2003: 521-527.
  • 10TOMASI G, VAN DEN BERG F, ANDERSSON C. Corre- lation optimized warping and dynamic time warping as prepro- cessing methods for chromatographic data [J]. Journal of Chemometrics, 2004, 18(5): 231-~41.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部