期刊文献+

基于多域卷积神经网络跟踪的动态手势识别 被引量:2

Dynamic gesture recognition based on multi-domain convolutional neural network
下载PDF
导出
摘要 针对传统的手势跟踪方式在复杂环境下跟踪效果差导致动态手势识别准确率不高的问题,提出了一种多域卷积神经网络跟踪框架下的动态手势识别算法。该算法采用多域卷积神经网络实现手势跟踪环节,并根据手势跟踪的特点,精简网络结构,构建全域通用fc6层,增强网络对动态手势跟踪的适用性,提升跟踪效果。其次,采用VGG-19对跟踪网络构建的动态手势轨迹特征图谱进行识别。算法将跟踪问题简化成目标与背景的二分类,采用多域卷积神经网络学习跟踪目标共性,能更好地给出跟踪目标模型,且浅层卷积神经网络的利用更能强化空间信息,从而提高动态手势跟踪和识别的效果。通过两组数据库测试表明,对自建的动态手势库识别率高达97.5%,并在Chalearn Gesture Data国际标准手势数据库取得了93.33%的识别率,验证了算法的有效性。 In view of the traditional gesture tracking method,the poor tracking effect limits the accuracy of dynamic gesture recognition.A dynamic gesture recognition algorithm for the multi-domain convolutional neural network tracking framework is proposed.First,multi-domain convolutional neural network is used to implement gesture tracking in the algorithm,and according to the characteristics of gesture tracking,the network structure is streamlined,and the universal fc6 layer is constructed.The applicability of dynamic gesture tracking is enhanced while the tracking effect is improved in this algorithm.Second,the VGG-19 network is used to identify the dynamic gesture trajectory feature map constructed by the tracking network.The tracking problem is reduced to a binary classification of target and background,and multi-domain convolutional neural networks are used to learn commonality of tracking targets.The shallow convolutional neural network is used to enhance the spatial information.Thus,the dynamic gesture tracking and recognition result is improved.Based on the Chalearn Gesture Data International Standard gesture database,The recognition rate of the four types of self-built dynamic gestures is as high as 97.5%,and 93.33%recognition rate which demonstrates the effectiveness of the algorithm.
作者 姬晓飞 张旭 李俊鹏 JI Xiao-fei;ZHANG Xu;LI Jun-peng(College of Automation,Shenyang Aerospace University,Shenyang 110136,China)
出处 《沈阳航空航天大学学报》 2021年第5期51-57,共7页 Journal of Shenyang Aerospace University
基金 国家自然科学基金(项目编号:61906125) 辽宁省教育厅科学研究服务地方项目(项目编号:L201708)。
关键词 多域卷积神经网络 动态手势识别 深度学习跟踪框架 手势建模 VGG-19 MDnet dynamic gesture recognition deep learning tracking framework gesture modeling VGG-19
  • 相关文献

参考文献8

二级参考文献88

  • 1张生军,何小海,李刚,周宜波,侯胜伟.基于视频的手势识别中左右手判别研究[J].四川大学学报(工程科学版),2011,43(S1):155-159. 被引量:3
  • 2王洪智,桑农,罗松.基于均值漂移和区域生长的手势跟踪算法[J].华中科技大学学报(自然科学版),2013,41(S1):133-136. 被引量:2
  • 3田巍,庄镇泉.基于HSV色彩空间的自适应肤色检测[J].计算机工程与应用,2004,40(14):81-85. 被引量:37
  • 4KAILATH T.The divergence and Bhattacharyya distance measures in signal selection[J].IEEE Trans. Comm. Tichnology, 1967 ( 15 ) :52-60.
  • 5RICHARD O D,PETER E H,DAVID G S. Pattern Classification[M].2nd Ed.李宏东,姚天翔,译.北京:机械工业出版社,2003.
  • 6WU Y,HUANG T S. Robust visual tracking by integrating multiple cues based on co-inference learning[J].International Journal of Computer Vision ,2004,58( 1 ) :55-71.
  • 7TRIESCH J, MALSBURG C V D.Self-organized integrationof adaptive visual cues for face tracking [C]//Proc. the Fourth International Conference on Automatic Face and Gesture Recognition. Grenoble, France : [s.n.], 2000 : 102-107.
  • 8COMANICIU D,RAMESH V,MEER P. Kernel-based object tracking [J].Pattern Analysis and Machine Intelligence, 2003,25 (5):564-577.
  • 9COMANICIU D,RAMESH V,MEER P. Real-time tracking of non- rigid objects using mean shift[J].IEEE Computer Vision and Pattern Recognition, 2000 (2) : 142-149.
  • 10CHENG Y.Mean-shift,mode seeking,and clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17 (8) : 790-799.

共引文献60

同被引文献38

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部