期刊文献+

空地协作机器人研究综述 被引量:1

A Review of Air-ground Collaborative Robots Research
下载PDF
导出
摘要 空地协作是当今多智能体研究领域的热点,具有区域覆盖面广、环境适应性强、任务执行率高等特点。相比于单一智能体系统,多智能体协作突显出了更强的数据匹配、自由协同、更好的系统冗余程度等特点,在更多领域广泛应用。同时其充分利用异构多机器人的功能互补性,组成跨域协作系统,实现任务协同和信息共享,从本质上提升面对复杂环境和任务规划的感知能力、执行能力和运行效率。因此,多智能体的有机协调、跨域协作等将引领未来机器人技术与应用的新模式。从空地协同进行综述,即以无人驾驶车辆(unmanned ground vehicle,UGV)与无人机(unmanned aerial vehicle,UAV)协同为研究对象,分析了空地协同系统的设备类型,对空地协作的任务类型、衡量标准、面临环境、角色功能以及协作模式进行了描述,并探索在异构机器人平台下的感知、决策和任务执行等能力,提出了对当前可能改善空地协作系统的见解和未来可能面临的挑战。 Air-ground collaboration is a hot spot in the field of multi-intelligent research nowadays,which has characteristics of wide-area coverage,high environmental adaptability,and high task execution rate.Compared with a single-intelligent system,multi-intelligent collaboration highlights greater data matching,free collaboration,and a higher degree of system redundancy,which can be widely used in multiple domains.At the same time,the functional complementarity of heterogeneous multi-robot can be fully utilized to form a cross-domain collaborative system to implement task collaboration and information sharing,which essentially improves its perceptive capability,execution capability,and efficiency in the operation of a complex environment and task planning.Therefore,the organic coordination and cross-domain collaboration of multi-intelligent will lead to the new paradigm of future robotics and applications.This paper provides an overview of air-ground collaboration,i.e.,unmanned ground vehicle(UGV)and unmanned aerial vehicle(UAV)collaboration as the research targets,we analyze the device type of air-ground collaboration systems and describe the task types,metrics,environments faced,role functions and collaboration models of air-ground collaboration,while we explore the capabilities of sensing,decision-making,and task execution under heterogeneous robotic platforms,and provide insights into the current potential improvements and challenges of air-ground systems in the future.
作者 赵津 刘畅 ZHAO Jin;LIU Chang(Key Laboratory of Advanced Manufacturing Technology,Ministry of Education,Guizhou University,Guiyang 550025,China;School of Mechanical Engineering,Guizhou University,Guiyang 550025,China)
出处 《贵州大学学报(自然科学版)》 2021年第6期10-18,共9页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金资助项目(51965008) 贵州省科技重大专项资助项目([2019]3012)。
关键词 跨域协同 多智能体 空地协作 任务规划 multi-domain cooperation multi-intelligence air-ground collaboration mission planning
  • 相关文献

参考文献9

二级参考文献38

  • 1况菲,王耀南.基于混合人工势场-遗传算法的移动机器人路径规划仿真研究[J].系统仿真学报,2006,18(3):774-777. 被引量:43
  • 2Chaimowicz L, Cowley A, Gomez-Ibanez D, et al. Deploying air-ground multi-robot teams in urban environments[C]// Proceedings of the International Wrokshop on Multi-Robot Systems. Washington, USA: Kluwer, 2005: 223-234.
  • 3Chaimowicz L, Grocholsky B, Keller J F, et al. Experiments in muhirobot air-ground coordination [C]//Proceedings of the 9th International Conference on Robotics and Automation. Barcelona, Spain: IEEE Press, 2004, 4:4 053-4 058.
  • 4Grocholsky B, Bayraktar S, Kumar V, et al. Synergies in feature localization by air ground robot teams [C]// Proceedings of the 9th International Conference on Robotics and Automatim Barcelona, Spain: IEEE Press, 2004, 4: 352-361.
  • 5Pinheiro P, Lima P. Bayesian sensor fusion for cooperative object localization and world modeling [C]//Proceedings of the 8th Conference on Intelligent Autonomous Systems. Amsterdam, Netherlands: IAS Press, 2004: IAS-8.
  • 6Stroupe A W, Martin M C, Baleh T. Dist,ibuted sensor fusion for object position estimation by multirobot systems[C]// IEEE International Conference on Robotics and Automation. Seoul, Korea:IEEE Press, 2001, 4:1 092-1 098.
  • 7Stephen M, Rock, Eric W. Frew, Hank Jones, etc. Combined CDGPS and Vision-based control of a small autonomous helicopter[C]// American Control Conterenc~ Philadelphia, USA: IEEE Press, 1998: 694-698.
  • 8Schraml S, Belbachir A N, Milosevic N, et al. Dynamic stereo vision system for real-time tracking [C]// IEEE International Midwest Symposium on Circuits and Systems. Seattle, USA: IEEE Press, 2010:1 409-1 412.
  • 9Bosch S, Lacroix S, Caballero F. Autonomous detection of safe landing areas for an UAV from monocular images[J] Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE Press, 2006:5 522-5 527.
  • 10Gu F, Wang Z, He Y, et al. Theoretical and experimental study of uncertain set based moving target localization using multiple robots [ C ]// IEEE International Conference on Robotics and Biomimetics. Thailand: IEEE Press, 2011:1 646-1 651.

共引文献59

同被引文献20

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部