摘要
新城市科学的涌现为开展大规模和精细化的空间量化分析提供了基础。已有的关于街道空间品质的研究多采用定性或主观定量分析方法,近年来虽有学者采用新数据和新技术对其进行分析,但测度维度相对单一,不能客观、全面地反映街道空间品质。基于此,文章结合相关经典理论,在新数据和新技术的支持下,构建了一个包含多维度、分指标的城市街道空间品质综合评价框架,该评价框架兼顾街道形态特征以及使用人群的感知与行为特征,通过可视化分析判定街道类型,采用机器学习算法分类别的对街道进行打分和精细化评价,对不同街道之间的品质进行比较,并基于综合评价结果和共识认知比较进行评价效能检测。最后,以上海市中心城区为例,对该评价框架的可操作性和合理性加以验证,希望能够为精准化的街道空间更新设计提供科学支撑。
Emerging new urban science provides a basis for large scale and refined quantitative spatial analysis.Previous street space quality researches mostly use qualitative and subjective quantitative methods or adopt new data and technology in a singular dimension,and they cannot reflect street space quality in an objective and comprehensive way.The paper proposes an evaluation framework for street space quality with multiple dimensions and diverse indices that incorporates physical street character and human perception and behavior.It defines street types by visual analysis,makes evaluation by machine learned scoring,compares the qualities of different streets,and examines the evaluation efficacy based on comprehensive evaluation and commonsense.The feasibility and rationality of the evaluation framework is examined in the case of central district of Shanghai,and it is hoped to provide scientific support for street space renewal design.
作者
狄迪
蒋映红
叶丹
叶宇
Di Di;Jiang Yinghong;Ye Dan;Ye Yu
出处
《规划师》
CSSCI
北大核心
2021年第16期5-12,共8页
Planners
基金
国家自然科学基金面上项目(52078343)
上海市自然科学基金面上项目(20ZR1462200)。
关键词
新城市科学
街道空间品质
定量评价
上海市中心城区
New urban science
Street space quality
Quantitative evaluation
Central district of Shanghai