期刊文献+

基于尺度注意力沙漏网络的头部MRI解剖点自动定位 被引量:2

Automatic location of anatomical points in head MRI based on the scale attention hourglass network
下载PDF
导出
摘要 为了自动定位头部核磁共振成像(Magnetic Resonance Imaging,MRI)中稳定解剖结构点,提出了一种基于沙漏网络(Hourglass Network,HN)的头部MRI图像解剖点自动定位方法。该方法使用HN的基本结构实现多尺度特征的提取与融合,并在融合多尺度特征时引入尺度注意力机制,提高解剖结构点的提取精度。利用DSNT(Differentiable Spatial to Numerical Transform)层将卷积神经网络生成的预测热图进行坐标回归来定位解剖点。500例头部MRI图像用于训练,300例图像用于测试,测试结果表明本文提出的方法对四个解剖点的定位准确率均超过了80%,与常用的关键点定位方法相比,该方法取得了最好的效果。该方法可辅助医生进行图像的解剖点标记,为头部图像的自动配准和头部疾病的大数据分析提供技术支持。 To automate the location of stable anatomical points in head magnetic resonance imaging(MRI),an automated anatomical point locating procedure using head MRI images has been proposed that relies on hourglass network(HN).In this method,the basic HN structure is used to extract and fuse multi-scale features.The scale attention mechanism is introduced in the fusion of multi-scale features to improve anatomical point location accuracy.This method uses the differential spatial to numerical trans⁃form(DSNT)layer to locate anatomical points using coordinate regression of the predicted heat map gen⁃erated by the convolution neural network.Five hundred head MRI images were used for training,whereas three hundred images were used for testing.Accuracy of the proposed method for location of four anatomical points was>80%.Compared with the common methods currently used to locate key points,the pro⁃posed method achieved the best results.This method can assist doctors in marking anatomical points in im⁃ages and provide technical support for automated registration of head MRI and big data analyses of head diseases.
作者 李赛 黎浩江 刘立志 张天桥 陈洪波 LI Sai;LI Hao-jiang;LIU Li-zhi;ZHANG Tian-qiao;CHEN Hong-bo(School of Life&Environmental Science,Guilin University of Electronic Technology,Guilin 541004,China;Department of Radiology,Sun Yat-sen University Cancer Center,Guangzhou 510060,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2021年第9期2278-2286,共9页 Optics and Precision Engineering
基金 国家自然科学基金项目(No.81760322,No.81460273)。
关键词 头部MR图像 解剖点定位 沙漏网络 尺度注意力 DSNT head MRI anatomical points location hourglass network scale attention DSNT
  • 相关文献

参考文献5

二级参考文献41

  • 1刘晓宁,周明全,高原.一种自动标定颅骨特征点的方法[J].西北大学学报(自然科学版),2005,35(3):258-261. 被引量:8
  • 2沈海平,达飞鹏,雷家勇.基于最小二乘法的点云数据拼接研究[J].中国图象图形学报,2005,10(9):1112-1116. 被引量:28
  • 3闵建雄,张继宗,陈世贤.人类颅骨面貌复原研究现状[J].中国法医学杂志,1990,5(1):45.
  • 4CHEN D Y, TIAN X P, SHEN Y T, et al: On visual similarity based 3D model retrieval [J]. Com- puter Graphics Forum, 2003, 22(3):223-232.
  • 5XU H K, JIANG M Y, YANG M Q. A new land- mark selection method for non-rigid registration of medical brain images [C]. 2010 IEEE 10'h Interna- tional Conference on Signal Processing (ICSP), 2010,920-923.
  • 6DAMAS S, CORDOn O, SANTAMARIA J, et al. . Forensic Identification by Computer-Aided Craniofacial Superimposition : A Survey [ M ]. ACM Computing Surveys (CSUR) ,2011,27.
  • 7ALBERT A M,JR K R,PATTERSON E. A review of the literature on the aging adult skull and face., Implications for forensic science research and appli- cations [J]. Forensic Science International, 2007, 172(1) :1-9.
  • 8PARZIANELLO L C, SILVEIRA M AM,FURUIE S S, et al. Automatic detection of the craniometric points for craniofacial identification [J], ANAIS DO IX SIBGRAPI, 1996, 189-196.
  • 9BALI.ERINI I., CALISTI M, CORDON 0. Auto- matic feature extraction from 3D range images of skulls [J]. Computational Forensics, 2008, 5158: 58-69.
  • 10严默涵.基于统计方法的颅骨特征点提取方法研究[D].西安:西北大学,2011.

共引文献62

同被引文献5

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部