期刊文献+

水环境模型与大数据技术融合研究 被引量:4

Research on the integration of water environment model and big data technology
下载PDF
导出
摘要 水环境模型内部结构复杂且计算耗时,造成参数率定、多情景分析及决策优化过程中面临高负荷计算难题,这极大地限制了其应用价值的发挥。如何融合水环境模型和大数据技术,深入挖掘模型应用潜力和充分发挥其应用价值是一个研究热点。总结了水环境模型在实际应用过程中面临的瓶颈,分析了大数据技术在解决这些问题上具有的潜力。基于现有成熟的大数据技术,提出了水环境模型与大数据技术融合框架,解决了水环境模型规模计算、规模存储和应用分析问题。阐述了模型与大数据技术融合过程中面临的问题,提出了具体的实现技术思路。通过SWAT模型率定应用案例,证明融合框架的可行性。最后探讨了大数据背景下水环境模型的未来研究方向,指出开展复杂水环境模型的代理模型研究和水环境模拟优化框架研究是未来的发展趋势。 Applications of water environment models are greatly limited by complex internal structure of the model and time-consuming calculations,significant computation burdens arise during the process of parameter calibration,multi-scenario analysis,and decision-making optimization.How to integrate water environment model and big data technology,deeply explore the potential of model application and give full play to its application value is a research hotspot.The bottlenecks faced by the water environment model in the process of practical application were summarized,and the potential of big data technology in solving these problems was analyzed.Based on the existing big data technology,a framework for the integration of water environment model and big data technology was proposed to solve the problem of large-scale calculation,large-scale storage and application analysis of water environment model.The problems faced in the integration of model and big data technologies were described,and specific technical ways of implementation were proposed.A case study for calibration of SWAT model was used to demonstrate feasibility of the proposed framework.Finally,the future research direction of water environment modeling in the context of big data was discussed,and the conclusion was pointed out that the research on surrogate modeling of complex water environment model and on water environment simulation and optimization framework is the future development trend.
作者 马金锋 饶凯锋 李若男 张京 郑华 MA Jinfeng;RAO Kaifeng;LI Ruonan;ZHANG Jing;ZHENG Hua(State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China;niversity of Chinese Academy of Sciences,Beijing 100049,China)
出处 《大数据》 2021年第6期103-119,共17页 Big Data Research
基金 国家重点研发计划资助项目(No.2019YFD0901105)。
关键词 水环境模拟 大数据 HADOOP MAPREDUCE 融合 water environment simulation big data Hadoop MapReduce integration
  • 相关文献

参考文献5

二级参考文献24

共引文献121

同被引文献28

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部