摘要
考虑有限随机区间上由马尔科夫链驱动的超前倒向随机微分方程。假设由马尔科夫链驱动的带停时的超前倒向随机微分方程的生成元满足Lipschitz条件,通过Doob鞅不等式以及不动点定理,证明由马尔科夫过程驱动的有限随机区间上的超前倒向随机微分方程存在唯一解。
The paper studies the anticipated backward stochastic differential equation on the Markov chain on a finite random interval.Assuming that the generator of the anticipated backward stochastic differential equation with stopping time on the Markov chain satisfies the Lipschitz condition,and employing through Doob's martingale inequality and the fixed point theorem,we can prove that there is a unique adapted solution to the anticipated backward stochastic differential equation with stopping time on the Markov chain.
作者
陈威
李志民
张雪峰
CHEN Wei;LI Zhimin;ZHANG Xuefeng(School of Mathematics,Physics and Finance,Anhui Polytechnic University,Wuhu 241000,China)
出处
《安徽工程大学学报》
CAS
2021年第5期89-94,共6页
Journal of Anhui Polytechnic University
基金
安徽省高校研究重大基金资助项目(KJ2019ZD16)
国家自然科学基金面上基金资助项目(71873002)。
关键词
超前倒向随机微分方程
停时
马尔科夫链
存在唯一性
anticipated backward stochastic differential equations
stopping time
markov chain
existence of uniqueness