摘要
目的研究前列腺癌(prostatic cancer,PCa)风险列线图预测模型的建立。方法对临床医学科学数据中心(301医院)前列腺相关的3000例患者的临床资料进行整理,其中PCa 1259例、PCa合并前列腺增生(Benign prostatic hyperplasia,BPH)335例、单纯BPH1406例(分PCa组与BPH组),利用单因素和多因素logistic回归分析前列腺癌的危险因素,再通过R语言软件建立风险列线图预测模型并进行模型验证。结果经数据处理后BPH组1253例(46.24%);PCa组1457例(53.76%)。单因素分析发现,两组患者在年龄、体质指数(Body Mass Index,BMI)、碱性磷酸酶(Alkaline phosphatase,ALP)、肌酸激酶同工酶(Creatine Kinase Isoenzyme-MB,CK-MB)、游离前列腺特异性抗原(free prostate specific antigen,fPSA)、甘油三酯方面比较,差异具有统计学意义(P<0.05)。多因素logistic回归分析发现两组患者年龄[OR=0.731,95%CI(0.6,0.891)]、BMI[OR=1.173,95%CI(1.014,1.357)]、CK-MB[OR=1.349,95%CI(1.097,1.659)]、fPSA[OR=0.769,95%CI(0.717,0.825)]、甘油三酯[OR=0.782,95%CI(0.651,0.939)]是前列腺癌的独立危险因素。基于5项独立危险因素与ALP、肌酸激酶(Creatine Kinase,CK)和总前列腺特异性抗原(total prostate specific antigen,tPSA)建立的风险列线图预测模型,经验证具有良好的预测能力。结论风险列线图预测模型的建立可有效预防和判断PCa的发病情况。
To study the establishment of a nomogram prediction model for prostate cancer(prostatic cancer,PCa)risk.Methods Clinical data of 3000 prostate-related patients from Clinical Medical Science Data Center(301 Hospital)were collated and divided into PCa group and BPH group,including PCa 1259 cases,PCa combined with prostate hyperplasia(Benign prostatic hyperplasia,BPH)335 cases and BPH alone 1406 cases.The risk factors of prostate cancer were analyzed by univariate and multivariate logistic regression,and risk nomographic prediction model was established through R and language software.Results After data processing,1253 BPH,46.24%and 1457 PCa,53.76%.Univariate analysis found statistically significant differences between the two groups in age,constitution index(Body Mass Index,BMI),alkaline phosphatase(Alkaline phosphatase,ALP),creatine kinase isoenzyme(Creatine Kinase Isoenzyme-MB,CK-MB),free prostate-specific antigen(free prostate-specific antigen,fPSA),and triglycerides.Multivariate logistic regression analysis revealed that age[OR=0.731,95%CI(0.6,0.891)],BMI[OR=1.173,95%CI(1.014,1.357)],CK-MB[OR=1.349,95%CI(1.097,1.659)],fPSA[OR=0.769,95%CI(0.717,0.825)],triglyceride[OR=0.782,95%CI(0.651,0.939)]was an independent risk factor in prostate cancer.A proven risk nomographic predictive model based on five independent risk factors established with ALP,creatine kinase(Creatine Kinase,CK)and total prostate-specific antigen(total prostate-specific antigen,tPSA).Conclusion The establishment of the risk nomogram prediction model can effectively prevent and judge the onset of PCa.
作者
李菲
徐紫薇
路帅
王闯
陆进
LI Fei(Clinical Medical College of Bengbu Medical College, Bengbu 233030, China)
出处
《牡丹江医学院学报》
2021年第6期28-33,共6页
Journal of Mudanjiang Medical University
基金
安徽省教育厅自然科学研究重点项目(KJ2019A0338)
安徽省大学生创新训练项目(S202010367071)。