期刊文献+

Delivery of pOXR1 through an injectable liposomal nanoparticle enhances spinal cord injury regeneration by alleviating oxidative stress 被引量:3

原文传递
导出
摘要 Oxidation resistance 1(OXR1)is regarded as a critical regulator of cellular homeostasis in response to oxidative stress.However,the role of OXR1 in the neuronal response to spinal cord injury(SCI)remains undefined.On the other hand,gene therapy for SCI has shown limited success to date due in part to the poor utility of conventional gene vectors.In this study,we evaluated the function of OXR1 in SCI and developed an available carrier for delivering the OXR1 plasmid(pOXR1).We found that OXR1 expression is remarkably increased after SCI and that this regulation is protective after SCI.Meanwhile,we assembled cationic nanoparticles with vitamin E succinate-graftedε-polylysine(VES-g-PLL)(Nps).The pOXR1 was precompressed with Nps and then encapsulated into cationic liposomes.The particle size of pOXR1 was compressed to 58 nm,which suggests that pOXR1 can be encapsulated inside liposomes with high encapsulation efficiency and stability to enhance the transfection efficiency.The agarose gel results indicated that Nps-pOXR1-Lip eliminated the degradation of DNA by DNase I and maintained its activity,and the cytotoxicity results indicated that pOXR1 was successfully transported into cells and exhibited lower cytotoxicity.Finally,Nps-pOXR1-Lip promoted functional recovery by alleviating neuronal apoptosis,attenuating oxidative stress and inhibiting inflammation.Therefore,our study provides considerable evidence that OXR1 is a beneficial factor in resistance to SCI and that Nps-Lip-pOXR1 exerts therapeutic effects in acute traumatic SCI.
出处 《Bioactive Materials》 SCIE 2021年第10期3177-3191,共15页 生物活性材料(英文)
基金 This work was supported by grants from Natural Science Foundation of China(81972150,81772450,81802251,81801233) Natural Science Foundation of Zhejiang Province(LR18H50001,LQ18H090008) Research Unit of Research and Clinical Translation of Cell Growth Factors and Diseases of Chinese Academy of Medical Science(2019RU010).
  • 相关文献

参考文献4

二级参考文献12

共引文献29

同被引文献16

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部