期刊文献+

3D-printed cell-free PCL-MECM scaffold with biomimetic micro-structure and micro-environment to enhance in situ meniscus regeneration 被引量:1

原文传递
导出
摘要 Despite intensive effort was made to regenerate injured meniscus by cell-free strategies through recruiting endogenous stem/progenitor cells,meniscus regeneration remains a great challenge in clinic.In this study,we found decellularized meniscal extracellular matrix(MECM)preserved native meniscal collagen and glycosaminoglycans which could be a good endogenous regeneration guider for stem cells.Moreover,MECM significantly promoted meniscal fibrochondrocytes viability and proliferation,increased the expression of type II collagen and proteoglycans in vitro.Meanwhile,we designed 3D-printed polycaprolactone(PCL)scaffolds which mimic the circumferential and radial collagen orientation in native meniscus.Taken these two advantages together,a micro-structure and micro-environment dually biomimetic cell-free scaffold was manipulated.This cell-free PCL-MECM scaffold displayed superior biocompatibility and yielded favorable biomechanical capacities closely to native meniscus.Strikingly,neo-menisci were regenerated within PCL-MECM scaffolds which were transplanted into knee joints underwent medial meniscectomy in rabbits and sheep models.Histological staining confirmed neo-menisci showed meniscus-like heterogeneous staining.Mankin scores showed PCL-MECM scaffold could protect articular cartilage well,and knee X-ray examination revealed same results.Knee magnetic resonance imaging(MRI)scanning also showed some neo-menisci in PCL-MECM scaffold group.In conclusion,PCL-MECM scaffold appears to optimize meniscus regeneration.This could represent a promising approach worthy of further investigation in preclinical applications.
出处 《Bioactive Materials》 SCIE 2021年第10期3620-3633,共14页 生物活性材料(英文)
基金 This work was supported by the National Key R&D Program of China[2019YFA0110600] the National Natural Science Foundation of China[81972070,81201212] the China Postdoctoral Science Foundation Grant[2019TQ0379,2019M663262] PLA Youth Project for Medical Science(18QNP057).
  • 相关文献

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部