摘要
Calcium phosphate cements(CPC)are widely anticipated to be an optimum bone repair substitute due to its satisfied biocompatibility and degradability,suitable to be used in minimally invasive treatment of bone defects.However the clinical application of CPC is still not satisfied by its poor cohesiveness and mechanical properties,in particular its osteoinductivity.Hyaluronic acid reinforced calcium phosphate cements(HA/CPC)showed extroadinary potential not only enhancing the compressive strength of the cements but also significantly increasing its osteoinductivity.In our study,the compressive strength of HA/CPC increased significantly when the cement was added 1%hyaluronic acid(denoted as 1-HA/CPC).In the meantime,hyaluronic acid obviously promoted ALP activity,osteogenic related protein and mRNA expression of hBMSCs(human bone marrow mesenchymal stem cells)in vitro,cement group of HA/CPC with 4%hyaluronic acid adding(denoted as 4-HA/CPC)showed optimal enhancement in hBMSCs differentiation.After being implanted in rat tibial defects,4-HA/CPC group exhibited better bone repair ability and bone growth promoting factors,comparing to pure CPC and 1-HA/CPC groups.The underlying biological mechanism of this stimulation for HA/CPC may be on account of higher osteogenic promoting factors secretion and osteogenic genes expression with hyaluronic acid incorporation.These results indicate that hyaluronic acid is a highly anticipated additive to improve physicochemical properties and osteoinductivity performance of CPCs for minimally invasive healing of bone defects.
基金
the National Key R&D Program of China(Grant No.2018YFC1106300 and 2017YFC1105000)
the National Natural Science Foundation of China(Grant No.52072398,51802340,31870956,81860385,81672227,U2001221,51772210)
the Frontier Science Key Research Programs of CAS(Grant No.QYZDB-SSW-JSC030)
the Shenzhen Significant Strategy Layout Project(Grant No.JCYJ20170413162104773 and JCYJ20200109114620793)
Beijing Municipal Health Commission(Grant No.BMHC-2018-4,BMHC-2019-9,PXM2020_026275_000002).