摘要
鉴于自动检测技术对于科技和生产的基础地位,有必要注重其品质的提升,并指出根本出路在于积累海量的检测过程数据,并从中提取隐含的有用信息。为此,需要首先建立检测系统物联网并运用数据挖掘技术。本文简要描述了常用的数据挖掘方法,重点介绍了能有效加速深度自学习能力的人工智能神经网络分析方法。接着列举了几种常用的硬件和软件加速技术,最后简述了FPGA在应用中的若干问题与对策。
In view of the basic position of automatic detection technology for science and technology and production,it is necessary to pay attention to the improvement of its quality,and point out that the fundamental way out is to accumulate a large amount of detection process data and extract hidden useful information.Therefore,it is necessary to establish the detection system Internet of things and use data mining technology.This paper briefly describes the common data mining methods,and focuses on the artificial intelligence neural network analysis method which can effectively accelerate the deep self-learning ability.Then it lists several common hardware and software acceleration technologies,and finally describes some problems and Countermeasures in the application of FPGA.
出处
《衡器》
2021年第9期41-45,共5页
Weighing Instrument
关键词
自动检测
物联网
数据挖掘
人工智能
FPGA
automatic detection
internet of things
data mining
artificial intelligence
FPGA