摘要
针对有源室内定位技术存在的基建投资较大、信号稳定性要求高、定位效果不理想等问题,文中提出一种成本较低、定位精度不受信号稳定性影响的无源室内定位方法。该方法应用单目视觉技术分析实时照片从而确定用户的室内定位。首先使用AlexNet网络的迁移模型识别照片得到初步定位,进而结合尺度不变特征变换算法和相机位姿估计算法解算出精确定位。经测试,92%的测试点定位误差在1.5 m以下。结果表明,文中提出的定位算法能实现较高的定位精度,为无源室内定位的相关研究提供参考。
To deal with the problems of the active indoor positioning technology,including large infrastructure investment,high requirement on the stability of the signal transmitter and unsatisfactory positioning effect,this paper proposes a passive indoor positioning algorithm with low cost and no influence of signal strength on the positioning accuracy.The monocular vision technology is adopted to analyze the photos taken in real time to determine the user's position in the road network.The AlexNet is applied by transfer learning to recognize the indoor scene and identify the photos for preliminary positioning,and then scale invariant feature transform(SIFT)and robust improvement solution to perspective-n-points problem(RPnP)are utilized to calculate and determine the accurate position.The experimental result shows that 92%of targeted positioning errors are within 1.5 cm.This positioning algorithm proposed achieves a high accuracy,which can provide a reference for similar studies.
作者
邓晖
邓逸川
欧智斌
张根杰
DENG Hui;DENG Yichuan;OU Zhibin;ZHANG Genjie(School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China;Key Labratory of Urban Land Resources Monitoring and Simulation,Ministry of Nature Resources,Shenzhen 518034,China)
出处
《测绘工程》
CSCD
2021年第6期8-15,共8页
Engineering of Surveying and Mapping
基金
自然资源部城市国土资源监测与仿真重点实验室开放基金资助课题(KF-2019-04-024)
广东省自然科学基金资助项目(2018A030310363,2017A030313393)
广州市科技计划项目重点项目(20181003SF0059)。
关键词
计算机视觉
室内定位
单目相机
卷积神经网络
迁移学习
computer vision
indoor positioning
monocular camera
convolutional neural network
transfer learning