期刊文献+

大数据下针对高铁增值服务优化的算法研究

Algorithm Research on Optimization of High-speed rail Value-added Services under Big Data
下载PDF
导出
摘要 通过分析高铁旅客增值服务系统目前存在的产品价格高、服务针对性差的问题,从高铁旅客增值服务需求出发,借助铁路客运大数据平台构建指标体系,提出了利用深度学习算法,依据旅客基本属性预测旅客所需增值服务的思路。并运用旅客出发到达地、旅客年龄、籍贯以及所乘坐席等要素对算法可靠性进行了检验。 This article analyzes the current high-speed rail passenger value-added service system's current problems of high product prices and poor service pertinence.Starting from the high-speed rail passenger value-added service demand,using the railway passenger transport big data platform to build an indicator system,it proposes the use of deep learning algorithms based on passengers’basic attributes predict the idea of value-added services required by passengers.The reliability of the algorithm is tested using factors such as the place of departure and arrival of the passenger,the age of the passenger,the place of origin,and the seat taken.
作者 王慧晶 Wang Hui-jing
出处 《湖南铁路科技职业技术学院学报》 2021年第2期56-58,55,共4页 Vocational Education Research on Rail Transit
关键词 高铁增值服务 大数据 深度学习算法 high-speed rail value-added services big data deep learning algorithms
  • 相关文献

参考文献6

二级参考文献74

  • 1吕慎,李旭宏.城市客运换乘枢纽设施布局效用分析[J].东南大学学报(自然科学版),2006,36(6):1024-1028. 被引量:17
  • 2[美]蔡斯 等.宋国房等译.生产与运作管理:制造与服务[M].北京:机械工业出版社,1999..
  • 3薛源,贾俊芳.旅客列车餐饮供应模式及实施方案的探讨[J].铁道运输与经济,2007,29(11):21-23. 被引量:7
  • 4Fujiyoshi H, Lipton A J, Kanade T. Real-time human mo- tion analysis by image skeletonization. IEICE Transactions on Information and Systems, 2004, 87-D(1): 113-120.
  • 5Chaudhry R, Ravichandran A, Hager G, Vidal R. His- tograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of hu- man actions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1932-1939.
  • 6Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Con- ference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 886-893.
  • 7Lowe D G. Object recognition from local scale-invariant fea- tures. In: Proceedings of the 7th IEEE International Confer- ence on Computer Vision. Kerkyra: IEEE, 1999. 1150-1157.
  • 8Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th In- ternational Conference on Pattern Recognition. Cambridge: IEEE, 2004. 32-36.
  • 9Dollar P, Rabaud V, Cottrell G, Belongie S. Behavior recog- nition via sparse spatio-temporal features. In: Proceedings of the 2005 IEEE International Workshop on Visual Surveil- lance and Performance Evaluation of Tracking and Surveil- lance. Beijing, China: IEEE, 2005.65-72.
  • 10Rapantzikos K, Avrithis Y, Kollias S. Dense saliency-based spatiotemporal feature points for action recognition. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1454-1461.

共引文献430

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部