期刊文献+

基于时域和时频域联合优化的语音增强算法 被引量:6

Speech Enhancement Algorithm Based on Time-Domain and Time-Frequency Joint Optimization
下载PDF
导出
摘要 基于深度学习的语音增强算法从带噪语音信号的时域或者时频域中恢复出干净的语音信号。然而,时域和时频域的增强算法都有自己的优点和不足。针对这一问题,本文提出了一种基于时域和时频域联合优化的语音增强算法。在生成对抗网络框架下,分别构建了时域和时频域的学习目标。在训练过程中,利用跳跃连接搭建了深层次的网络结构,通过对不同领域学习目标的联合优化,获得了语音增强性能的改善。实验结果表明:相比基线模型,本文提出的算法在多个客观评价指标上都具有更好的表现。 Deep learning-based speech enhancement algorithm recovers clean speech signals from the time domain or time-frequency domain of noisy speech signals.However,both time-domain and time-frequency-domain methods have their own advantages and disadvantages.To solve this problem,this paper proposes a speech enhancement algorithm based on joint optimization of time domain and time-frequency domain.In the framework of generative adversarial network,the learning objectives in time domain and time-frequency domain are constructed respectively.In the training process,the skip connection is used to build a deep network structure,and the improvement of speech enhancement performance is obtained through joint optimization of learning goals in different fields.The experimental results show that:compared with the baseline models,the proposed algorithm has better performance on multiple objective evaluation metrics.
作者 杨帆 李军锋 颜永红 YANG Fan;LI Junfeng;YAN Yonghong(Key Laboratory of Speech Acoustics and Content Understanding,Institute of Acoustics,Chinese Academy of Sciences,Beijing,100190,China;University of Chinese Academy of Sciences,Beijing,100049,China;Xinjiang Laboratory of Minority Speech and Language Information Processing,Xinjiang Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,830011,China)
出处 《网络新媒体技术》 2021年第5期37-42,共6页 Network New Media Technology
基金 国家重点研发计划项目(编号:2020YFC2004100) 国家自然科学基金项目(编号:11911540067)。
关键词 生成对抗网络 神经网络 语音增强 generative adversarial network neural network speech enhancement
  • 相关文献

参考文献2

共引文献8

同被引文献26

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部