期刊文献+

利用模型相似性的三维模型簇协同分割 被引量:2

Co-segmentation of three-dimensional shape clusters by shape similarity
下载PDF
导出
摘要 为准确捕捉三维点云模型的上下文信息,提高分割准确率,提出一种利用模型相似性进行三维模型簇协同分割的方法。首先,对点云模型进行最远点采样得到质心点,并采用球内随机选取的方式确定邻域点以构建球形邻域;然后,使用特征聚合算子编码三维点云之间的几何拓扑关系,提取各邻域间的相关联特征,并利用各球形邻域的质心坐标构建空间相似性矩阵,由空间相似性矩阵对编码器网络所提取的模型局部特征进行加权求和,完成对三维模型的协同分析;最后,搭建分层特征提取网络对经过加权处理的关联特征进行解码操作,完成模型簇协同分割任务。实验结果表明,本文算法在ShapeNet Part数据集上的协同分割准确率达到了86.0%。与kNN算法相比,以球内随机选取法为邻域点采样策略,可使网络的分割准确率提升0.8%;相比于使用共享的多层感知机进行特征提取,使用特征聚合算子进行卷积运算可使网络的分割准确率提高12.9%;与当前主流的模型分割算法相比,本文算法的分割准确率得到了进一步的提升。 To accurately capture the context information of three-dimensional(3D)point cloud shapes and improve the accuracy of segmentation,we propose a method for the co-segmentation of 3D shape clusters using shape similarity.First,a Farthest Point Sampling is performed on the point cloud shape to obtain the centroid point,and a random pick method is used to determine the neighborhood points to construct a spherical neighborhood.Then,the feature aggregation operator is used to encode geometric topological relationships of 3D point cloud.The associated features among the neighborhood is extracted,and a spatial similarity matrix is constructed using the centroid coordinates of each spherical neighborhood.The spatial similarity matrix sums the weighted local features of the shape extracted by the encoder network to complete the collaborative analysis of the 3D shape.Finally,a hierarchical feature extraction network is built to decode the weighted associated features and complete the shape cluster co-segmentation task.Experimental results show that the co-segmentation accuracy of our algorithm on the ShapeNet Part dataset reaches 86.0%.Compared to the k-nearest neighbor algorithm,using the random selection method within a sphere as the neighborhood point sampling strategy can increase the segmentation accuracy of the network by 1.5%.Compared to the use of shared multilayer perceptrons for feature extraction,the use of feature aggregation operators for convolution operations can increase the segmentation accuracy of the network by 5.6%.Moreover,compared to the current mainstream shape segmentation algorithms,the segmentation accuracy of the proposed algorithm is superior.
作者 杨军 张敏敏 Yang Jun;Zhang Min-min(Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730070,China;School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2021年第10期2504-2516,共13页 Optics and Precision Engineering
基金 国家自然科学基金项目(No.61862039) 甘肃省科技计划资助项目(No.20JR5RA429) 兰州市人才创新创业项目(No.2020-RC-22) 兰州交通大学天佑创新团队(No.TY202002)。
关键词 协同分割 特征聚合算子 空间相似性矩阵 模型簇 分层编-解码器 co-segmentation feature aggregation operator spatial similarity matrix shape clusters layered codec
  • 相关文献

参考文献5

二级参考文献93

  • 1张齐勇,岑敏仪,周国清,杨晓云.城区LiDAR点云数据的树木提取[J].测绘学报,2009,38(4):330-335. 被引量:32
  • 2Xiaobai C, Aleksey G, Thomas F. A benchmark for 3D mesh segmentation[C]//ACM SIGGRAPH 2009. New Orleans, Louisiana: ACM, 2009: 1-12.
  • 3Lee Y, Lee S, Shamir A, et al. Intelligent mesh scis soring using 3D snakes[C]//Proceedings of the Corn purer Graphics and Applications, 12th Pacific Con(er ence. Seoul: IEEE Computer Society, 2004: 279 - 287.
  • 4Hitoshi Y, Stefan G, Rhaleb Z, et al. Mesh segmentation driven by Gaussian eurvature[J]. The Visual Computer, 2005, 21 (8-10): 659-668.
  • 5Provot I., Debled-Rennesson I. 3D noisy discrete ob jects: segmentation and application to smoothing[J]. Pattern Recognition, 2009, 42 (8): 1626-1636.
  • 6Ouyang D, Feng H. On the normal vector estimation for point cloud data from smooth surfaces[J]. Com- puter-Aided Design, 2005, 37 (10): 1071-1079.
  • 7Chopp D L. Some improvements of the fast marching method[J]. SIAM Journal of Scientific Computing, 2002, 23 (1): 230-244.
  • 8Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces[M]. New York: Springer, 2003.
  • 9Chunming L, Chenyang X, Changfeng G. et al. I.ev el set evolution without re initialization: a new varia tional formulation[C]//IEEE Computer Society Con ference on Computer Vision and Pattern Recognition San Diego: IEEE Computer Society, 2005:430-436.
  • 10Memoli F, Sapiro G. Fast computation of weighted distance functions and geodesics on implicit hyper surfaces [J]. Journal of Computational Physics, 2001, 173(2): 730 -764.

共引文献108

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部