期刊文献+

营养免疫与系统炎症参数在非小细胞肺癌患者中的预后意义 被引量:4

The nutritional immune and inflammation related parameters for non‑small cell lung cancer patients
下载PDF
导出
摘要 目的比较评估3种营养免疫与系统炎症反应指标预后营养指数(PNI),格拉斯哥预后评分(GPS)及控制营养状态(CONUT)评分在非小细胞肺癌(NSCLC)患者中的预后预测价值。方法本研究以2014年9月至2018年5月于南通大学附属海安医院接受根治性手术治疗的186例NSCLC患者为研究对象,根据PNI、GPS和COUNT进行分组。通过Kaplan‐Meier生存曲线及受试者工作特征(ROC)曲线分别评估术前PNI、GPS及CONUT评分在NSCLC患者中的预后意义。此外,通过Cox多因素回归分析明确影响NSCLC患者预后的独立预测因素。结果基于CONUT评分将NSCLC患者分为两组,结果发现CONUT≥2分组的总生存(OS)期显著短于CONUT 0~1分组,3年OS率分别为70.6%与94.0%,差异有统计学意义(χ^(2)=29.249;P<0.001);类似地,以45.0作为PNI的临界值,将患者分为PNI>45.0组与PNI≤45.0组,结果表明PNI≤45.0与NSCLC患者不良预后显著相关(3年OS率:66.5%比92.6%;χ^(2)=28.686;P<0.001)。另外,Kaplan‐Meier生存曲线展示GPS 2分与GPS 0~1分者的3年OS率分别为61.7%和90.7%,差异有统计学意义(χ^(2)=18.499;P<0.001)。ROC曲线显示术前CONUT评分、PNI值与GPS评分的曲线下面积(AUC)值分别为0.753(95%CI=0.659~0.846)、0.734(95%CI=0.629-0.839)及0.669(95%CI=0.552~0.786)。多因素的Cox回归分析证实术前CONUT评分(HR=4.068;95%CI=1.310~12.631;P=0.015),PNI(HR=4.043;95%CI=1.585~10.307;P=0.003)和TNM分期(HR=2.428;95%CI=1.153~5.111,P=0.020)是NSCLC患者预后的独立影响因素。结论术前PNI与CONUT评分是NSCLC患者的独立预后因素,二者均可作为NSCLC患者预后评估中一项简便、实用的血液学指标。 Objective To evaluate the prognostic value of three nutritional⁃immune and inflammation⁃related parameters,including prognostic nutritional index(PNI),Glasgow prognostic score(GPS)and controlling nutritional status(CONUT),for non⁃small cell lung cancer(NSCLC)patients.Methods A total of 186 NSCLC patients who were treated with curative resection in our hospital from September 2014 to May 2018 were included in this study.All patients were divided into study groups based on different nutritional⁃and immune⁃related parameters.The prognostic value of PNI,GPS and CONUT for NSCLC patients was determined by Kaplan⁃Meier survival curve and receiver operation characteristics(ROC)curve,respectively.Moreover,the Cox multivariate regression analysis was used to identify the independent prognostic factors for NSCLC patients.Results All NSCLC patients were divided into two groups based on the CONUT score,and the results showed that the overall survival(OS)of patients with CONUT≥2 was significantly shorter than that of patients with CONUT 0~1.The 3⁃year OS of two study groups was 70.6%and 94.0%,respectively(χ^(2)=29.249,P<0.001),with a significantly statistical difference.Similarly,patients were divided into PNI>45.0 and PNI≤45.0 group based on the cut⁃off value of PNI.The results indicated that low PNI was significantly correlated to the poor OS of NSCLC patients(3⁃year OS:66.5%vs 92.6%,χ^(2)=28.686,P<0.001).Additionally,Kaplan⁃Meier curves showed that the 3⁃year OS of GPS 2 and GPS 0-1 group was 61.7%and 90.7%,respectively.There was a significantly statistical difference between the two groups(χ^(2)=18.499,P<0.001).ROC curve showed that the area under curve(AUC)of CONUT,PNI and GPS was 0.753(95%CI=0.659~0.846),0.734(95%CI=0.629~0.839)and 0.669(95%CI=0.552~0.786),respectively.The results of multivariate Cox analysis demonstrated that CONUT(HR=4.068 and 95%CI=1.310~12.631,P=0.015),PNI(HR=4.043 and 95%CI=1.585~10.307,P=0.003)and TNM stage(HR=2.428,95%CI=1.153~5.111,P=0.020)were independently risk factors to the prognosis of NSCLC patients.Conclusion Both PNI and CONUT were independent prognostic factors for NSCLC patients,and they could be used as simple and useful parameter for prognostic prediction of NSCLC patients.
作者 王晓兰 韩伟 王莹 Wang Xiaolan;Han Wei;Wang Ying(Department of Thoracic Surgery,Hai'an Hospital,Nantong University,Hai'an 226600,Jiangsu,China)
出处 《肿瘤代谢与营养电子杂志》 2021年第5期519-524,共6页 Electronic Journal of Metabolism and Nutrition of Cancer
关键词 非小细胞肺癌 控制营养状态评分 预后营养指数 格拉斯哥预后评分 预后预测 Non⁃small cell lung cancer Controlling nutritional status Prognostic nutritional index Glasgow prognostic score Prognostic prediction
  • 相关文献

参考文献3

  • 1H.Agakishiev,M.M.Aggarwal,Z.Ahammed,A.V.Alakhverdyants,I.Alekseev,J.Alford,B.D.Anderson,C.D.Anson,D.Arkhipkin,G.S.Averichev,J.Balewski,D.R.Beavis,N.K.Behera,R.Bellwied,M.J.Betancourt,R.R.Betts,A.Bhasin,A.K.Bhat,H.Bichsel,J.Bieleik,J.Bielcikova,B.Biritz,L.C.Bland,W.Borowski,J.Bouchet,E.Braidot,A.V.Brandin,A.Bridgeman,S.G.Brovko,E.Bruna,S.Bueltmann,I.Bunzarov,T.P.Burton,X.Z.Cai,H.Caines,M.Calderon de la Barca Sanchez,D.Cebra,R.Cendejas,M.C.Cervantes,Z.Chajecki,P.Chaloupka,S.Chattopadhyay,H.F.Chen,J.H.Chen,J.Y.Chen,L.Chen,J.Cheng,M.Cherney,A.Chikanian,K.E.Choi,W.Christie,P.Chung,M.J.M.Codrington,R.Corliss,J.G.Cramer,H.J.Crawford,S.Dash,A.Davila Leyva,L.C.De Silvat,R.R.Debbe,T.G.Dedovich,A.A.Derevschikov,R.Derradi de Souza,L.Didenko,P.Djawotho,S.M.Dogra,X.Dong,J.L.Drachenberg,J.E.Draper,J.C.Dunlop,L.G Efimov,M.Elnim,J.Engelage,G Eppley,M.Estienne,L.Eun,O.Evdokimov,R.Fatemi,J.Fedorisin,A.Feng,R.G.Fersch,P.Filip,E.Finch,V.Fine,Y.Fisyak,C.A.Gagliardi,D.R.Gangadharan,A.Geromitsos,F.Geurts,P.Ghosh,Y.N.Gorbunov,A.Gordon,O.Grebenyuk,D.Grosnick,S.M.Guertin,A.Gupta,W.Guryn,B.Haag,O.Hajkova,A.Hamed,L-X.Han,J.W.Harris,J.P.Hays-Wehle,M.Heinz,S.Heppelmann,A.Hirsch,E.Hjort,G.W.Hoffmann,D.J.Hofiman,B.Huang,H.Z.Huang,T.J.Humanic,L.Huo,G.Igo,P.Jacobs,W.W.Jacobs,C.Jena,F.Jin,J.Joseph,E.G.Judd,S.Kabana,K.Kang,J.Kapitan,K.Kauder,H.Ke,D.Keane,A.Kechechyan,D.Kettler,D.P.Kikola,J.Kiryluk,A.Kisiel,V.Kizka,A.G.Knospe,D.D.Koetke,T.Kollegger,J.Konzer,I.Koralt,L.Koroleva,W.Korsch,L.Kotchenda,V.Kouchpil,P.Kravtsov,K.Krueger,M.Krus,L.Kumar,P.Kurnadi,M.A.C.Lamont,J.M.Landgraf,S.LaPointe,J.Lauret,A.Lebedev,R.Lednicky,J.H.Lee,W.Leight,M.J.LeVine,C.Lil,L.Li,N.Li,W.Li,X.Li,X.Li,Y.Li,Z.M.Li,M.A.Lisa,F.Liu,H.Liu,J.Liu,T.Ljubicic,W.J.Llope,R.S.Longacre,W.A.Love,Y.Lu,E.V.Lukashov,X.Luo,G.L.Ma,Y.G.Mai,D.P.Mahapatra,R.Majka,O.I.Mall,L.K.Mangotra,R.Manweiler,S.Margetis,C.Markert,H.Masui,H.S.Matis,Yu.A.Matulenko,D.MeDonald,T.S.McShane,A.Meschanin,R.Milner,N.G.Minaev,S.Mioduszewski,A.Mischke,M.K.Mitrovski,B.Mohanty,M.M.Mondal,B.Morozov,D.A.Morozov,M.G.Munhoz,M.Naglis,B.K.Nandi,T.K.Nayak,P.K.Netrakanti,L.V.Nogach,S.B.Nurushev,G.Odyniec,A.Ogawa,Oh,Ohlson,V.Okorokov,E.W.Oldag,D.Olsont,M.Pachr,B.S.Page,S.K.Pal,Y.Pandit,Y.Panebratsev,T.Pawlak,H.Pei,T.Peitzmann,C.Perkins,W.Peryt,S.C.Phatak,P.Pile,M.Planinic,M.A.Ploskon,J.Pluta,D.Plyku,N.Poljak,A.M.Poskanzer,B.V.K.S.Potukuchi,C.B.Powell,D.Prindle,N.K.Pruthi,A.M.Poskanzer,B.V.K.S.Potukuchi,B.Powell,D.Prindle,N.K.Pruthi,P.R.Pujahar,J.Putschke,H.Qiu,R.Raniwala,S.Raniwala,R.L.Ray,R.Redwine,R.Reed,H.G.Riter,J.B.Roberts,O.V.Rogachevskiy,J.L.Romero,A.Rose,L.Ruan,J.Rusnak,N.R.Sahoo,S.Sakai,I.Sakrejda,T.Sakuma,S.Salur,J.Sandweiss,E.Sangaline,A.Sarkar,J.Schambach,R.P.Scharenberg,A.M.Schmah,N.Schmitz,T.R.Schuster,J.Seele,J.Seger,I.Selyuzhenkov,P.Seyboth,E.Shahaliev,M.Shao,M.Sharma,S.S.Shi,Q.Y.Shou,E.P.Sichtermann,F.Simon,R.N.Singaraju,M.J.Skoby,N.Smirnov,H.M.Spinka,B.Srivastava,T.D.S.Stanislaus,D.Staszak,S.G.Steadman,J.R.Stevens,R.Stock,M.Strikhanov,B.Stringfellow,A.A.P.Suaide,M.C.Suarez,N.L.Subba,M.Sumbera,X.M.Sun,Y.Sun,Z.Sun,B.Surrow,D.N.Svirida,T.J.M.Symons,A.Szanto de Toledo,J.Takahashi,A.H.Tang,Z.Tang,L.H.Tarini,T.Tarnowsky,D.Thein,J.H.Thomas,J.Tian,A.R.Timmins,D.Tlusty,M.Tokarev,V.N.Tram,S.Trentalange,R.E.Tribble,Tribedy,O.D.Tsai,T.Ullrich,D.G.Underwood,G.Van Buren,G.van Nieuwenhuizen,J.A.Vanfossen,R.Varma,G.M.S.Vasconcelos,A.N.Vasiliev,F.Videbaek,Y.P.Viyogi,S.Vokal,M.Wadat,M.Walker,F.Wang,G.Wang,H.Wang,J.S.Wang,Q.Wang,X.L.Wang,Y.Wang,G.Webb,J.C.Webb,G.D.Westfall,C.Whitten,H.Wieman,S.W.Wissink,R.Witt,W.Witzke,Y.F.Wu,Xiao,W.Xie,H.Xu,N.Xu,Q.H.Xu,W.Xu,Y.Xu,Z.Xu,L.Xue,Y.Yang,P.Yepes,K.Yip,I-K.Yoo,M.Zawisza,H.Zbroszczyk,W.Zhan,J.B.Zhang,S.Zhang,W.M.Zhang,X.P.Zhang,Y.Zhang,Z.P.Zhang,J.Zhao,C.Zhong,W.Zhou,X.Zhu,Y.H.Zhu,R.Zoulkarneev,Y.Zoulkarneeva.Measurements of dihadron correlations relative to the event plane in Au+Au collisions at√^(S)NN=200 GeV[J].Chinese Physics C,2021,45(4):198-241. 被引量:351
  • 2Rui-Mei Feng,Yi-Nan Zong,Su-Mei Cao,Rui-Hua Xu.Current cancer situation in China:good or bad news from the 2018 Global Cancer Statistics?[J].Cancer Communications,2019,39(1):202-213. 被引量:887
  • 3许文娟,马莹,王译民,杨炯.预后营养指数预测小细胞肺癌预后的临床应用研究[J].四川大学学报(医学版),2020,51(4):573-577. 被引量:20

二级参考文献2

共引文献1243

同被引文献42

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部