期刊文献+

波壁管中脉动流动的数值模拟

Numerical Simulation of Pulsating Flow in Wave Wall Tube
下载PDF
导出
摘要 利用数值模拟的方法,文中对脉动流动下波壁管内流体的流动和换热特性进行研究,分析了脉动参数雷诺数Re、斯德鲁哈尔数St以及振动分率P对波壁管中流体的传热和阻力特性的影响.结果表明:Re、St与P对流体的换热特性均有影响,在脉动流场下,波壁管内流体的传热强化幅度随雷诺数Re的增大而先增大后减小;与斯德鲁哈尔数St以及振动分率P均成正比关系.随着St的增加,摩擦阻力系数在较低St时几乎不发生变化,而在较大St时明显发生变化,但随着St的增加,平均摩擦系数f_(m)几乎不发生变化;平均摩擦系数f_(m)随振动分率P的增加而逐渐增大,随雷诺数Re的增大而逐渐减小. By means of numerical simulation,the flow and heat transfer characteristics of fluid in a wavewalled tube with pulsating flow are studied,and the effects of pulsating parameters Re,St and P on the heat transfer and resistance characteristics of fluid in a wave-walled tube are analyzed.The results show that Re,St and P all affect the heat transfer characteristics of the fluid.Under the fluctuating flow field,the heat transfer enhancement amplitude of the fluid in the wave wall tube increases first and then decreases with the increase of Reynolds number Re.It is directly proportional to both St and P.With the increase of St,the frictional resistance coefficient almost does not change at a lower St,while it obviously changes at a higher St.However,with the increase of St,the average frictional coefficient f_(m) almost does not change.The mean friction coefficient f_(m) increases with the increase of vibration fraction P and decreases with the increase of Re number.
作者 张亮 张安龙 荆宇燕 曲平平 田林超 陈贺敏 Zhang Liang;Zhang Anlong;Jing Yuyan;Qu Pingping;Tian Linchao;Chen Hemin(College of Vehicles and Energy,Yanshan University,Qinhuangdao Hebei 066004;School of Information Science and Engineering,Yanshan University,Qinhaungdao Hebei 066004)
出处 《东北电力大学学报》 2021年第6期11-16,共6页 Journal of Northeast Electric Power University
基金 河北省高等学校科学技术研究重点项目(ZD2020169)。
关键词 脉动流动 波壁管 数值模拟 强化传热 Pulsating flow Wave wall tube Numerical simulation Strengthening heat transfer
  • 相关文献

参考文献4

二级参考文献25

  • 1[1]Uchida S. The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe [J]. ZAMP, 1956,7(3):403-422.
  • 2[2]Siegel R, Perlmutter M. Heat transfer for pulsating laminar duct flow [J]. ASME J Heat Transfer,1962,34(2):111-123.
  • 3[3]Cho H W, Hyun J M. Numerical solutions of pulsating flow and heat transfer characteristics in a pipe[J]. Int J Heat Fluid Flow,1990,11(3):321-330.
  • 4[4]Kim S Y, Kang B H, Hyun J M. Heat transfer in the thermally developing region of a pulsating channel flow[J].Int J Heat Mass Transfer,1993,36(17):4 257-4 266.
  • 5[5]Zhao Tianshou, Cheng P. A numerical solution of laminar forced convection in a heated pipe subjected to a reciprocating flow[J].Int J Heat Mass Transfer,1995,38(16):3 011-3 022.
  • 6[6]Zhao Tianshou, Cheng P. The friction coefficient of a fully developed laminar reciprocating flow in a circular pipe[J].Int J Heat and Fluid Flow, 1996,17(2):167-172.
  • 7[7]Li Zengyao, Tao Wenquan. A new stability guaranteed second order difference scheme[J]. Num Heat Transfer, Part B,2002,42(4):349-365.
  • 8Patera A T, Mikic B B. Instabilities-Resonant Heat Transfer Enhancement. Int. J. Heat Mass Transfer, 1986,29(6): 1127-1138.
  • 9Greiner M. An Experimental Investigation of Resonant Heat Transfer Enhancement in Grooved Channels. Int.J. Heat Mass Transfer, 1991, 34(8): 1384-1391.
  • 10Nishimura T, Oka N, Yoshinaka Y, et al. Influence of Imposed Oscillatory Frequency on Mass Transfer Enhancement of Grooved Channels for Pulsatile Flow. Int. J.Heat Mass Transfer, 2000, 43(10): 2365-2374.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部