摘要
针对图像中人体部分的精确分割问题,本文提出一种基于U-Net神经网络的行人图像语义分割方法。该方法首先进行四次卷积和最大池化处理,实现了下采样,提取出图像中的行人特征;其次进行四次卷积和反卷积处理,实现了上采样;最终通过卷积获得了图像分割结果。使用戴姆勒行人检测标准数据库训练神经网络并进行测试,分割效果良好。
Aiming at the problem of accurate segmentation of human part in image, a semantic segmentation method of pedestrian image based on u-net neural network is proposed in this paper. Firstly, the method performs quartic convolution and maximum pool processing to realize down sampling and extract pedestrian features from the image;Secondly, the up sampling is realized by quartic convolution and deconvolution;Finally, the image segmentation results are obtained by convolution. Using Daimler pedestrian detection standard database to train the neural network and test it, the segmentation effect is good.
作者
姚金龙
王希乐
刘贺
张锦华
曹羽德
YAO Jinlong;WANG Xile;LIU He;ZHANG Jinhua;CAO Yude(Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处
《信息与电脑》
2021年第18期69-71,共3页
Information & Computer
基金
北京邮电大学大学生研究创新基金:北京市共建项目专项。
关键词
U-Net
卷积神经网络
语义分割
U-Net
convolutional neural network
semantic segmentation