期刊文献+

基于U-Net神经网络的行人图像语义分割

Pedestrian Image Semantic Segmentation Based on U-net
下载PDF
导出
摘要 针对图像中人体部分的精确分割问题,本文提出一种基于U-Net神经网络的行人图像语义分割方法。该方法首先进行四次卷积和最大池化处理,实现了下采样,提取出图像中的行人特征;其次进行四次卷积和反卷积处理,实现了上采样;最终通过卷积获得了图像分割结果。使用戴姆勒行人检测标准数据库训练神经网络并进行测试,分割效果良好。 Aiming at the problem of accurate segmentation of human part in image, a semantic segmentation method of pedestrian image based on u-net neural network is proposed in this paper. Firstly, the method performs quartic convolution and maximum pool processing to realize down sampling and extract pedestrian features from the image;Secondly, the up sampling is realized by quartic convolution and deconvolution;Finally, the image segmentation results are obtained by convolution. Using Daimler pedestrian detection standard database to train the neural network and test it, the segmentation effect is good.
作者 姚金龙 王希乐 刘贺 张锦华 曹羽德 YAO Jinlong;WANG Xile;LIU He;ZHANG Jinhua;CAO Yude(Beijing University of Posts and Telecommunications,Beijing 100876,China)
机构地区 北京邮电大学
出处 《信息与电脑》 2021年第18期69-71,共3页 Information & Computer
基金 北京邮电大学大学生研究创新基金:北京市共建项目专项。
关键词 U-Net 卷积神经网络 语义分割 U-Net convolutional neural network semantic segmentation
  • 相关文献

参考文献5

二级参考文献83

  • 1苏金玲,王朝晖.基于Graph Cut和超像素的自然场景显著对象分割方法[J].苏州大学学报(自然科学版),2012,28(2):27-33. 被引量:7
  • 2汪海洋,潘德炉,夏德深.二维Otsu自适应阈值选取算法的快速实现[J].自动化学报,2007,33(9):968-971. 被引量:135
  • 3LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 4HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 5LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 6HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 7KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114.
  • 8GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587.
  • 9LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440.
  • 10SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf.

共引文献677

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部