期刊文献+

半张量积在线性映射中的应用 被引量:1

Application of semi-tensor product in linear mapping
下载PDF
导出
摘要 以矩阵左半张量积为工具,研究了几种不同类型的线性映射的矩阵展开表示。作为特殊情况,给出了Lyapunov映射、辛映射、伴随映射、共轭映射的相关表示。最后给出了这种矩阵形式在李代数中的应用。 Using the left semi-tensor product of matrices as a tool,the matrix expansion representations of several different types of linear mappings are studied.As a special case,the related representations of Lyapunov mapping,symplectic mapping,adjoint mapping and conjugate mapping are given.Finally,the application of this matrix form in Lie algebra is given.
作者 李东方 刘会彩 张锦 LI Dongfang;LIU Huicai;ZHANG Jin(Department of Public Education,Xuchang Electrical Vocational College,Xuchang 461000,China;School of Mathematics Science,Liaocheng University,Liaocheng 252059,China)
出处 《南昌大学学报(理科版)》 CAS 北大核心 2021年第4期336-339,共4页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(11801249)。
关键词 左半张量积 换位矩阵 线性映射 矩阵表示 李代数 left semi-tensor product commutation matrix linear mapping matrix representation lie algebra
  • 相关文献

参考文献5

二级参考文献23

  • 1[1]Huang L., Linear Algebra in Systems and Control Theory (in Chinese), Beijing: Science Press, 1984.
  • 2[2]Zhang, F., Matrix Theory, Basic Results and Techniques, New York: Springer-Verlag, 1999.
  • 3[3]Sokolnikoff, I. S., Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua, 2nd ed., New York: John Wiley & Sons, Inc., 1964.
  • 4[4]Boothby, W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed., New York: Academic Press, 1986.
  • 5[5]Willems, J. L., Stability Theory of Dynamical Systems, New York: John Wiley & Sons, Inc., 1970.
  • 6[6]Ooba, T., Funahashi, Y., Two conditions concerning common quadratic Lyapunov functions for linear systems, IEEE Trans. Automat. Contr., 1997, 42(5): 719—721.
  • 7[7]Ooba, T., Funahashi, Y., Stability robustness for linear state space models——a Lyapunov mapping approach, Sys. Contr. Lett, 1997, 29. 191—196.
  • 8[8]Cheng, D., Xue, W., Huang, J., On general Hamiltonian Systems, Proc. of ICARCV'98, Singapore, 1998, 185—189.
  • 9[9]Morgan, B. S., The synthesis of linear multivariable systems by state feedback, JACC, 1964, 64: 468—472.
  • 10[10]Falb, P. L., Wolovich, W. A., Decoupling and synthesis of multivariable control systems, IEEE Trans, Aut. Contr., 1967, 12: 651—668.

共引文献64

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部