摘要
降型是广义二型模糊逻辑系统的核心模块。比较和分析了离散改进Karnik-Mendel(EKM)算法中求和运算和连续EKM(CEKM)算法中求积分运算,基于广义二型模糊集的α-平面表达理论,扩展EKM算法计算完成广义二型模糊逻辑系统质心降型。当计算广义二型模糊逻辑系统的质心降型集和质心解模糊化值时,用2个仿真实验说明了当适当增加广义二型模糊集主变量采样个数时,离散EKM算法的计算结果可以准确地逼近CEKM算法。
Type-reduction is the key block in general type-2 fuzzy logic systems.This paper compares and analyzes the sum operation in discrete enhanced Karnik-Mendel(EKM)algorithms and the integral operation in continuous enhanced Karnik-Mendel(CEKM)algorithms.Based on the alpha-representation theory of general type-2 fuzzy sets,EKM algorithms are extended to perform the centroid type-reduction of general type-2 fuzzy logic systems.While computing the centroid type-reduced sets and the defuzzified values of general type-2 fuzzy logic systems,two computer simulation examples show that the calculation results of EKM algorithms can accurately approximate the CEKM algorithms,when the number of sampling of primary variables of centroid output GT2 FSs increases appropriately.
作者
陈阳
王涛
CHEN Yang;WANG Tao(College of Science,Liaoning University of Technology,Jinzhou 121001,China)
出处
《计算机工程与科学》
CSCD
北大核心
2021年第11期2027-2034,共8页
Computer Engineering & Science
基金
国家自然科学基金(61973146)
辽宁省自然科学基金(20180550056)
辽宁工业大学校人才基金(xr2020002)
辽宁省博士启动基金(2021-BS-258)。