期刊文献+

离散型和连续型改进Karnik-Mendel算法在高阶模糊系统降型中的关系研究 被引量:2

Study on the relationship between discrete and continuous enhanced Karnik-Mendel algorithms in type-reduction of higher-order fuzzy system
下载PDF
导出
摘要 降型是广义二型模糊逻辑系统的核心模块。比较和分析了离散改进Karnik-Mendel(EKM)算法中求和运算和连续EKM(CEKM)算法中求积分运算,基于广义二型模糊集的α-平面表达理论,扩展EKM算法计算完成广义二型模糊逻辑系统质心降型。当计算广义二型模糊逻辑系统的质心降型集和质心解模糊化值时,用2个仿真实验说明了当适当增加广义二型模糊集主变量采样个数时,离散EKM算法的计算结果可以准确地逼近CEKM算法。 Type-reduction is the key block in general type-2 fuzzy logic systems.This paper compares and analyzes the sum operation in discrete enhanced Karnik-Mendel(EKM)algorithms and the integral operation in continuous enhanced Karnik-Mendel(CEKM)algorithms.Based on the alpha-representation theory of general type-2 fuzzy sets,EKM algorithms are extended to perform the centroid type-reduction of general type-2 fuzzy logic systems.While computing the centroid type-reduced sets and the defuzzified values of general type-2 fuzzy logic systems,two computer simulation examples show that the calculation results of EKM algorithms can accurately approximate the CEKM algorithms,when the number of sampling of primary variables of centroid output GT2 FSs increases appropriately.
作者 陈阳 王涛 CHEN Yang;WANG Tao(College of Science,Liaoning University of Technology,Jinzhou 121001,China)
出处 《计算机工程与科学》 CSCD 北大核心 2021年第11期2027-2034,共8页 Computer Engineering & Science
基金 国家自然科学基金(61973146) 辽宁省自然科学基金(20180550056) 辽宁工业大学校人才基金(xr2020002) 辽宁省博士启动基金(2021-BS-258)。
关键词 广义二型模糊逻辑系统 质心 改进Karnik-Mendel算法 计算精度 计算机仿真 general type-2 fuzzy logic system centroid enhanced Karnik-Mendel algorithm calculation accuracy computer simulation
  • 相关文献

参考文献5

二级参考文献143

  • 1陈薇,孙增圻.二型模糊系统研究与应用[J].模糊系统与数学,2005,19(1):126-135. 被引量:26
  • 2ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(13) 338-353. J.
  • 3OHN R I, COUPLAND S. Type-2 fuzzy logic: a historical view[J] IEEE Computational Intelligence Magazine, 2007, 2(1): 57 - 62.
  • 4MENDEL J M. Computing with words, when words can mean dif- ferent things to different people[C]//Proceedings of the International ICSC Symposium On Fuzzy Logic and Applications. Rochester, USA: IEEE, 1999:158 - 164.
  • 5KARNIK N N, MENDEL J M, LIANG Q. Type-2 fuzzy logic sys- tems[J]. 1EEE Transactions on Fuzzy Systems, 1999, 7(6): 643 - 658.
  • 6MENDEL J M, JOHN R I. Type-2 fuzzy sets made simple[J]. IEEE Transactions on Fuzzy Systems, 2002, 10(2): 117 - 127.
  • 7MENDEL J M. Type-2 fuzzy sets: some questions and answers[J]. IEEE Neural Networks Society Newsletter, 2003:10 - 13.
  • 8MENDEL J M. Type-2 fuzzy sets and systems: an overview[J]. IEEE Computational Intelligence Magazine, 2007, 2(1): 20 - 29.
  • 9ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning-I[J]. Information Sciences, 1975, 8(1): 199 - 249.
  • 10HISDAL E. The IF THEN ELSE statement and interval-valued fuzzy sets of higher type[J]. International Journal of Man-Machine Studies, 1981, 15(44): 385- 455.

共引文献57

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部