期刊文献+

电池模组液冷板冲压结构设计及其散热性能研究 被引量:2

Research on stamping structure design and heat dissipation performance of liquid-cooling plate for battery module
原文传递
导出
摘要 为了探究液冷板冲压结构对电池模组散热性能的影响,对液冷板的冲压结构参数进行了分析与设计,采用CFD(计算流体动力学)流固热耦合数值计算方法,对不同液冷板流道结构参数下的散热性能、能耗以及均温性能进行了分析。结果表明:减小中心流道宽度,液冷系统的散热均温性能提升明显;中心流道宽度W5等于7 mm时,平均温度降低了2.5%,而最大温差降低了7.7%。流道深度越小,系统的散热均温性能越好,能耗亦大幅增加;流道深度为2 mm时,平均温度下降了26.9%,最大温差下降了32.7%,流阻升高了3.4倍。添加强化传热结构后,液冷系统的平均温度降低了3.8%、最大温差下降了15.1%;相比整体区域添加强化传热结构,部分区域添加强化传热结构可以减小流阻、降低能耗,而不引起系统的散热均温性能的显著变化。 In order to investigate the effects of stamping structure for liquid-cooling plate on the heat dissipation performance of battery module,the stamping structure parameters of liquid-cooling plate were analyzed and designed,and CFD(Computational Fluid Dynamics)fluid-solid thermal coupled numerical calculation method was used to analyze the heat dissipation performance,energy consumption,and uniform temperature performance under various flow channel structure parameters of liquid-cooling plate.The results show that when the width of central flow channel decreases,the heat dissipation and temperature uniformity performances of the liquid-cooling system are significantly improved.When the width of central flow channel W5 is equal to 7 mm,the average temperature drops by 2.5%and the maximum temperature difference decreases by 7.7%.The smaller the depth of flow channel is,the better the heat dissipation and temperature uniformity performances of liquid-cooling system are,and the energy consumption increases significantly.When the depth of flow channel is 2 mm,the average temperature decreases by 26.9%,the maximum temperature difference decreases by 32.7%,and the flow resistance increases by 3.4 times.The average temperature drops by 3.8%in liquid-cooling system adding the enhanced heat transfer structure,and the maximum temperature difference decreases by 15.1%.Compared with adding an enhanced heat transfer structure in the whole area,adding enhanced heat transfer structure in some area can reduce the flow resistance and energy consumption without causing significant changes in the heat dissipation and temperature uniformity performances of the system.
作者 杨志红 廖向阳 包有玉 余剑武 Yang Zhihong;Liao Xiangyang;Bao Youyu;Yu Jianwu(Department of Automotive Engineering,Hunan Communication Polytechnic,Changsha 410132,China;College of Mechanical and Vehicle Engineering,Hunan University,Changsha 410082,China)
出处 《锻压技术》 CAS CSCD 北大核心 2021年第10期112-118,共7页 Forging & Stamping Technology
基金 湖南省基金项目(2020JJ7004)。
关键词 液冷板 冲压结构 均温性能 散热性能 强化传热结构 电池模组 liquid-cooling plate stamping structure uniform temperature performance heat dissipation performance enhanced heat transfer structure battery module
  • 相关文献

参考文献6

二级参考文献25

  • 1马骁.电动汽车锂离子电池温度特性与加热管理系统研究[D].北京:北京理工大学机械与车辆学院,2010.
  • 2Ahmad APesaran, Steve Burch, Matthew Keyser. An Approach for Desighing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs [ C ]. The Fourth Vehicle Thermal Manage- ment Systems Conference and Exhibition, 1999.
  • 3雷治国.混合动力电传动车辆锂离子动力电池热管理研究[D].北京:北京理工大学,2013:4-28.
  • 4CHEN S C, WANG C C. Thermal Analysis of Lithium-ion Batter- ies [ J ]. Journal of Power Sources, 2005, 140 : 111-124.
  • 5陈科.电动车辆动力电池电场理论与热特性分析[D].北京:北京理工大学,2010:49-80.
  • 6Chakib Alaoui, Salameh Ziyad M. Modeling and Simulation of a Thermal Management System for Electric Vehicles [ C ]. The 29th Annual Conference of the IEEE Industrial Electronics Society, Roanoke, VA, United States,2003: 887-890.
  • 7White BE. Energy-Harvesting Devices: Beyond the Bat- tery [J]. Nature nanotechnology, 2008, 3(2): 71 -72.
  • 8HU Xiaojun, CHANG Shiyan, LI Jingjie, et al. En- ergy for Sustainable Road Transportation in China: Challenges, Initiatives and Policy hnplications [J]. Energy, 2010, 35(11): 4289-4301.
  • 9International Energy Agency Key World Energy Statistics 2014 [EB/OL]. [2015-05-09]. http://www.iea.org/ pub- lications/ freepublications/publication/key-world-energy- statistics-2014.html.
  • 10Campanari S, Manzolini G, Garcia De La Iglesia F. En- ergy Analysis of Electric Vehicles Using Batteries or Fuel Cells Through Well-to-Wheel Driving Cycle Siumlations [J]. Journal of Power Sources, 2009, 186(2): 464- 477.

共引文献197

同被引文献56

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部