摘要
The superfamily of cytochrome P450(CYP)enzymes plays key roles in plant evolution and metabolic diversification.This review provides a status on the CYP Iandscape within green algae and land plants.The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algaespecific clans are recognized.Clan 71,72,and 85 remain the largest CYP clans and include many taxaspecific CYP(sub)families reflecting emergence of linage-specific pathways.Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways.High substrate promiscuity is commonly observed for CYPs from large families,favoring retention of gene duplicates and neofunctionalization,thus seeding acquisition of new functions.Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple exampies of convergent evolution where CYPs have been independently recruited from the same or different CYP families,to adapt to similar environmental challenges or ecological niches.Sometimes only a single or a few mutations are required for functional interconversion.A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database(erda.dk/public/vgrid/PlantP450/).
基金
supported by a PhD fellowship provided through a Villum Foundation Young Investigator Program fellowship granted to Elizabeth H.J.Neils on(grant number 13167)
supported by the VILLUM Center for Plant Plasticity(VKR023054)(B.L.M.)
a European Research Council Advanced Grant(ERC-2012-ADG_20120314)
the Novo Nordisk Foundation Distinguished Investigator 2019 Grant(NNF 0054563,The Black Holes in the Plant Universe).