期刊文献+

Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations

下载PDF
导出
摘要 Using the test particle simulation method, we investigate the stochastic motion of electrons with energy of 300 keV in a monochromatic magnetosonic(MS) wave field. This study is motivated by the violation of the quasi-linear theory assumption, when strong MS waves(amplitude up to ~1 nT) are present in the Earth's magnetosphere. First, electron motion can become stochastic when the wave amplitude exceeds a certain threshold. If an electron initially resonates with the MS wave via bounce resonance, as the bounce resonance order increases, the amplitude threshold of electron stochastic motion increases until it reaches the peak at about the 11 th order in our study, then the amplitude threshold slowly declines. Further, we find that the coexistence of bounce and Landau resonances between electrons and MS waves will significantly reduce the amplitude threshold. In some cases, the electron motion can become stochastic in the field of an MS wave with amplitudes below 1 nT. Regardless, if neither the bounce nor Landau resonance condition is satisfied initially, then the amplitude threshold of stochastic motion shows an increasing trend for lower frequencies and a decreasing trend for higher frequencies, even though the amplitude threshold is always very large(> 5 nT). Our study suggests that electron stochastic motion should also be considered when modeling electron dynamics regulated by intense MS waves in the Earth's magnetosphere.
出处 《Earth and Planetary Physics》 CSCD 2021年第6期592-600,共9页 地球与行星物理(英文版)
基金 funded by the Strategic Priority Research Program of Chinese Academy of Sciences Grant No. XDB41000000。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部