期刊文献+

融合惯性信息的单目直接法定位与稠密地图构建 被引量:3

Robot Localization and Dense Map Construction Based on Monocular Direct Method and Inertial Information
下载PDF
导出
摘要 针对单目直接法依靠图像梯度进行优化容易陷入局部最优、且难以构建低纹理区域地图的问题,构建高精度IMU预积分模型,将惯性信息融合到图像跟踪过程中,为视觉跟踪提供精确的帧间运动约束及良好的初始化梯度方向信息,构建视觉惯性跟踪模型,提高了单目视觉的定位精度并实现半稠密地图构建;通过超像素图像分割提取出二维图像不同的轮廓位置,提出双重投影匹配算法确定出可靠的超像素与对应的3D空间点,通过RANSAC对低梯度图像区域进行平面拟合以及异常点剔除,完成低纹理区域的地图扩建,实现稠密点云地图的构建。实验结果表明,与传统视觉定位模型相比,直接法与惯性信息融合提高了系统的定位精度,在无GPU加速的情况下能构建精确的稠密三维点云地图。 Traditionally,the monocular direct method uses image gradients for optimization,it is easy to fall into a local optimum,and it is difficult to construct a low-texture area map.Aiming at these problems,a high-precision IMU pre-integration model is constructed to fuse inertial information into image tracking,which provides accurate inter-frame motion constraints and good initialization gradient direction information for visual tracking.The constructed visual inertial tracking model improves the positioning accuracy of monocular vision and realizes the construction of semi-dense maps.Different contour positions of a two-dimensional image are extracted by using superpixel image segmentation,then the antipodal projection matching algorithm is used to determine the superpixels and the corresponding 3 D points.The RANSAC method is used to eliminate abnormal points and fit the low gradient image region to complete the map expansion of the low-texture region.The dense point cloud image is constructed eventually.The experimental results show that compared with the traditional visual positioning model,the direct method fusing inertial information improves the positioning accuracy of the system,and can construct accurate dense 3 D point cloud maps without GPU acceleration.
作者 于建均 王洋 左国玉 阮晓钢 李晨 YU Jian-jun;WANG Yang;ZUO Guo-yu;RUAN Xiao-gang;LI Chen(Department of Information,Beijing University of Technology,Beijing 100024,China;Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing University of Technology,Beijing 100024,China)
出处 《控制工程》 CSCD 北大核心 2021年第10期1967-1976,共10页 Control Engineering of China
基金 国家自然科学基金资助项目(10041001201804,61773027) 北京市自然科学基金资助项目/北京市教育委员会科技计划重点项目(KZ201610005010)。
关键词 单目视觉 IMU预积分 直接法 稠密点云地图 Monocular vision IMU pre-integration direct method dense point cloud map
  • 相关文献

参考文献6

二级参考文献97

  • 1杨卫莉,郭雷.基于分水岭算法和图论的图像分割[J].计算机工程与应用,2007,43(7):28-30. 被引量:15
  • 2董晓坡,王绪本.救援机器人的发展及其在灾害救援中的应用[J].防灾减灾工程学报,2007,27(1):112-117. 被引量:58
  • 3韩淑洁,陈爱玲,涂志平.消防机器人整车设计方案探讨[J].青岛远洋船员学院学报,2007,28(2):53-57. 被引量:2
  • 4Ren X F, Malik J. Learning a classification model forsegmentation[C]. 9th IEEE International Conference on ComputerVision. France, 2003: 10-17.
  • 5Shi J B,Malik J. Normalized cuts and image segmentationfJ]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2000,22(8):888-905.
  • 6Vincent L, Soille P. Watersheds in digital spaces: an efficientalgorithm based on immersion simulations[J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 1991,13(6): 583-598.
  • 7Comaniciu D, Meer P. Mean shift: a robust approach toward featurespace analysis[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2002,24(5): 603-619.
  • 8S'neiVn "Y K, Kman K, KanaAe T. Mode-seekmg 11th IEEE International Conference on Computer Vision. Brazil,2007: 1-8.
  • 9Vedaldi A, Soatto S. Quick shift and kernel methods for modeseeking[C]. 10th European Conference on Computer Vision, France,2008: 12-18.
  • 10Levinshtein A, Stere A, Kutulakos K N, et al.. Turbopixels: fastsuperpixels using geometric flows[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2009, 31(12): 2290-2297.

共引文献53

同被引文献19

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部