期刊文献+

NiCo_(2)O_(4) hollow microsphere-mediated ultrafast peroxymonosulfate activation for dye degradation 被引量:2

原文传递
导出
摘要 Morphology and dispersity are key factors for activating peroxymonosulfate(PMS).In this study,we designed a recyclable open-type NiCo_(2)O_(4) hollow microsphere via a simple hydrothermal method with the assistance of an NH_(3) vesicle.The physical structure and chemical properties were characterized using techniques such as scanning electron microscope(SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),N2 adsorption and X-ray photoelectron spectroscopy(XPS).The test results confirm that the inner and outer surfaces of open-type NiCo_(2)O_(4) hollow-sphere can be efficiently utilized because of the hole on the surface of the catalyst,which can minimize the diffusion resistance of the reactants and products.Under optimized conditions,the total orga nic carbon(TOC) removal efficiency of rhodamine B(RhB) can reach up to 80% in 40 min,which is almost 50% shorter than the reported values.The reactive radicals were identified and the proposed reaction mechanism was well described.Moreover,the disturbances of HCO_(3)^(-),NO_(3)^(-),Cl^(-)and H_(2) PO_(4)^(-)were further investigated.As a result,HCO_(3)-and NO_(3)-suppressed the reaction while Cl-and H_(2) PO4-had a double effect on reaction.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第8期2495-2498,共4页 中国化学快报(英文版)
基金 supported by the Hebei Natural Science Foundation (No.B2020208064) the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University (No.2019FY003025) Shijiazhuang Science and Technology Department (No.191240263A)。
  • 相关文献

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部