摘要
静息态功能磁共振图像是随着时间变化的一系列三维图像。已有的3D卷积过程本质上是对三维图像数据或二维图像+时间维数据进行处理,无法有效地融合静息态功能磁共振图像的时间轴信息。为此,本文提出了新型的4D卷积神经网络识别模型。具体而言,通过对输入的fMRI使用四维卷积核执行四维卷积,在自闭症患者的功能磁共振图像中,从空间和时间上提取特征,从而捕获图像在时间序列上的变化信息。所开发的模型从输入图像中生成多个信息通道,最终的特征表示结合了所有通道的信息。实验结果表明,在保证模型泛化性能的前提下,该方法融合了功能像的全局信息,并且采集了功能像随时间变化的趋势信息,进而解决了用卷积神经网络处理三维图像随时间变化的分类问题。
Resting-state functional magnetic resonance images are a series of three-dimensional(3D)images that change over time.The existing 3D convolution processes 3D image data or two-dimensional image and time-dimensional data,but it cannot effectively fuse the time axis information of a resting-state functional magnetic resonance image.To resolve this,a new four-dimensional(4D)convolutional neural network(CNN)recognition model is proposed in this paper.Specifically,by performing a 4D convolution using a 4D convolution kernel on the input functional magnetic resonance imaging,features are spatially and temporally extracted from the functional magnetic resonance image of a patient with autism,thereby capturing information about the changes in the image's time series.The developed model generates multiple information channels from the input image,and the final feature representation combines information from all channels.The experimental results show that to ensure the generalization performance of the model,the method fuses the global information of the functional image and collects its trend information over time,consequently solving the classification problem of 3D image changes with time using a CNN.
作者
郭磊
王骏
丁维昌
潘祥
邓赵红
施俊
王士同
GUO Lei;WANG Jun;DING Weichang;PAN Xiang;DENG Zhaohong;SHI Jun;WANG Shitong(School of Artificial Intelligence and Computer,Jiangnan University,Wuxi 214122,China;School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China)
出处
《智能系统学报》
CSCD
北大核心
2021年第6期1021-1029,共9页
CAAI Transactions on Intelligent Systems
基金
江苏省自然科学基金项目(BK20181339)。
关键词
深度学习
卷积神经网络
自闭症
4D卷积
功能磁共振成像
特征提取
特征融合
图像分类
deep learning
convolutional neural network
autism
4D convolution
functional magnetic resonance imaging
feature extraction
feature fusion
image classification