期刊文献+

4D卷积神经网络的自闭症功能磁共振图像分类 被引量:1

Classification of the functional magnetic resonance image of autism based on 4D convolutional neural network
下载PDF
导出
摘要 静息态功能磁共振图像是随着时间变化的一系列三维图像。已有的3D卷积过程本质上是对三维图像数据或二维图像+时间维数据进行处理,无法有效地融合静息态功能磁共振图像的时间轴信息。为此,本文提出了新型的4D卷积神经网络识别模型。具体而言,通过对输入的fMRI使用四维卷积核执行四维卷积,在自闭症患者的功能磁共振图像中,从空间和时间上提取特征,从而捕获图像在时间序列上的变化信息。所开发的模型从输入图像中生成多个信息通道,最终的特征表示结合了所有通道的信息。实验结果表明,在保证模型泛化性能的前提下,该方法融合了功能像的全局信息,并且采集了功能像随时间变化的趋势信息,进而解决了用卷积神经网络处理三维图像随时间变化的分类问题。 Resting-state functional magnetic resonance images are a series of three-dimensional(3D)images that change over time.The existing 3D convolution processes 3D image data or two-dimensional image and time-dimensional data,but it cannot effectively fuse the time axis information of a resting-state functional magnetic resonance image.To resolve this,a new four-dimensional(4D)convolutional neural network(CNN)recognition model is proposed in this paper.Specifically,by performing a 4D convolution using a 4D convolution kernel on the input functional magnetic resonance imaging,features are spatially and temporally extracted from the functional magnetic resonance image of a patient with autism,thereby capturing information about the changes in the image's time series.The developed model generates multiple information channels from the input image,and the final feature representation combines information from all channels.The experimental results show that to ensure the generalization performance of the model,the method fuses the global information of the functional image and collects its trend information over time,consequently solving the classification problem of 3D image changes with time using a CNN.
作者 郭磊 王骏 丁维昌 潘祥 邓赵红 施俊 王士同 GUO Lei;WANG Jun;DING Weichang;PAN Xiang;DENG Zhaohong;SHI Jun;WANG Shitong(School of Artificial Intelligence and Computer,Jiangnan University,Wuxi 214122,China;School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China)
出处 《智能系统学报》 CSCD 北大核心 2021年第6期1021-1029,共9页 CAAI Transactions on Intelligent Systems
基金 江苏省自然科学基金项目(BK20181339)。
关键词 深度学习 卷积神经网络 自闭症 4D卷积 功能磁共振成像 特征提取 特征融合 图像分类 deep learning convolutional neural network autism 4D convolution functional magnetic resonance imaging feature extraction feature fusion image classification
  • 相关文献

参考文献1

二级参考文献54

  • 1Abrams, D, A., Lynch, C. J” Cheng, K. M” Phillips, J., Supekar, K.,Ryali, S., ... Menon, V. (2013). Underconnectivity between voice-selective cortex and reward circuitry in children with autism.Proceedings of the National Academy of Sciences of the United States of America, "0(29), 12060-12065.
  • 2Agam, Y” Joseph, R. M., Barton, J. J., & Manoach, D. S.(2010). Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders.Neuroimage, 52(1), 336-347.
  • 3American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5.).5th ed. America: America Psychiatric Publishing.
  • 4Anagnostou, E.. & Taylor, M. J. (2011). Review of neuroimaging in autism spectrum disorders: What have we learned and where we go from here. Molecular Autism, 2 (1),4.
  • 5Bal, E., Yerys, B. E.,Sokoloff, J. L., Celano, M. J., Kenworthy, L+, Giedd, J. N., & Wallace, G. L. (2013). Do social attribution skills improve with age in children with high functioning autism spectrum disorders.,in Autism Spectrum Disorders, 7(1), 9-16.
  • 6Baron-Cohen S., Leslie A. M.,&Frith U. (1985). Does the autistic child have a “theory of mind”.. Cognition, 27(1), 3746.
  • 7Barttfeld, P., Wicker, B., Cukier, S., Navarta,S., Lew, S., Leiguarda, R.,&Sigman, M. (2012). State-dependent changes of connectivity patterns and functional brain network topology in autism spectrum disorder. Neuropsychologia, 50(14), 3653-3662.
  • 8Barttfeld, P., Wicker, B., Cukier, S., Navarta, S., Lew, S., & Sigman, M. (2011). A big-world network in ASD: Dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia, 49(2), 254-263.
  • 9Blumberg, S. J., Bramlett, M. D.,Kogan, M. D.,Schieve, L. A., Jones, J. R.,& Lu, M. C. (2013). Changes in prevalence of parent-reported autism spectrum disorder in school-aged U.S.children: 2007 to 2011-2012. National Health Statistics Reports, (65), 1-7.
  • 10Centers for Disease Control and Prevention. (2012). Prevalence of autism spectrum disorders-Autism and developmental disabilities monitoring network, 14 sites, united states,200S.Morbidity and Mortality Weekly Report. Surveillance Summaries, 67(SS03), 1-19.

共引文献8

同被引文献29

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部