期刊文献+

碱性膜燃料电池阳极双催化层结构与性能研究

Structure and Performance of Anode Dual Catalyst Layer for Anion-Exchange Membrane Fuel Cell
下载PDF
导出
摘要 改善阳极水管理是碱性阴离子交换膜(AEM)燃料电池重要的研究课题.在质子交换膜燃料电池(PEMFC)阴极研究中,发现改变催化层内部结构能够有效改善阴极的水管理能力,然而目前关于AEM燃料电池催化层相关研究较少.本研究针对AEM燃料电池阳极水分布特点,利用Pt/C和PtRu/C催化剂在碱性条件下氢氧化反应(HOR)的活性差异,设计了双层催化剂结构.当活性较高的PtRu/C层靠近气体扩散层,活性较低Pt/C层靠近AEM时,双催化层形成与单一催化层水分布相反的活性梯度,能够有效改善水分布,在测试温度为30℃和100%相对湿度时,获得较高峰值功率密度88.1 mW/cm^(2).研究成果为碱性膜燃料电池的阳极催化层结构设计提出一种新思路. Improving water transport behavior within the anode catalyst layer is an important research topic for anionexchange membrane(AEM)fuel cells.For proton-exchange membrane fuel cells(PEMFCs),the catalyst layer mi-crostructure has been found to significantly influence the water management,while there is a lack of study on the anode catalyst layer for AEM fuel cells.In this work,we utilize the hydrogen oxidation reaction(HOR)activity difference between Pt/C and PtRu/C catalysts to design anode dual catalyst layers(ADCLs)to improve the water management.The results indicate that the ADCL with the PtRu/C layer close to the gas diffusion layer and the Pt/C close to the AEM form a reactivity gradient that is opposite to the water gradient in the PtRu/C or Pt/C catalyst layer,leading to better water transport in the anode.At 30℃and a relative humidity of 100%,the maximum peak power density was achieved as 88.1 mW/cm^(2).The results of this study will provide a novel idea for the design of anode catalyst layers in AEM fuel cells.
作者 尹燕 刘洋 祝伟康 张俊锋 Yin Yan;Liu Yang;Zhu Weikang;Zhang Junfeng(State Key Laboratory of Engines,Tianjin University,Tianjin 300350,China)
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2022年第1期40-45,共6页 Journal of Tianjin University:Science and Technology
基金 国家重点研发计划资助项目(2018YFB0105405).
关键词 碱性膜燃料电池 水管理 双层催化层 anion-exchange membrane fuel cell water management anode dual catalyst layers
  • 相关文献

参考文献5

二级参考文献55

  • 1TANG DaoPing,PAN Jing,LU ShanFu,ZHUANG Lin,LU JunTao.Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress[J].Science China Chemistry,2010,53(2):357-364. 被引量:9
  • 2Steele B C H, Heinzel A. Materials for fuel-cell technolo- gies[J]. Nature, 2001, 414(686l): 345-352.
  • 3Borup R, Meyers J, Pivovar B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chemical Reviews, 2007, 107(10): 3904-3951.
  • 4Pan J, Chen C, Zhuang L, et al. Designing advanced alka- line polymer electrolytes for fuel cell applications[J]. Ac- counts of Chemical Research, 2012, 45(3): 473-481.
  • 5Pan J, Chen C, Zhuang L, et al. Structure-performance re- lationship study of alkaline polymer electrolytes[J]. ECS Transactions, 2011, 41(1): 69-72.
  • 6Lu S F, Pan J, Huang A B, et al. Alkaline polymer elec- trolyte fuel cells completely free fi'om noble metal cata- lysts [J]. Proceedings of the National Academy of Sciences USA, 2008, 105(52): 20611-20614.
  • 7Varcoe J R, Slade R C T. Prospects for alkaline anion-ex- change membrane in low temperature fuel cells [J]. Fuel cells, 2005, 5(2): 187-200.
  • 8Merle G, Wessling M, Nijmeijer K. Anion exchange mem- branes for alkaline fuel cells: A review[J]. Journal ofMembrane Science, 2011, 377(1/2): 1-35.
  • 9Wang Y, Li L, Hu L, et al. A feasibility analysis for alka- line membrane direct methanol fuel cell: Thermodynamic disadvantages versus kinetic advantages[J]. Electrochem- istry Communications, 2003, 5(8): 662-666.
  • 10Pan J, Lu S F, Li Y, et al. High-performance alkaline polymer electrolyte for fuel cell applications [J]. Ad- vanced Functional Materials, 2010, 20(2): 312-319.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部