期刊文献+

基于Siam-UNet+ +的高分辨率遥感影像建筑物变化检测 被引量:15

Building change detection from high resolution remote sensing imagery based on Siam-UNet++
下载PDF
导出
摘要 针对同一区域前后时序的高分辨率遥感影像背景复杂、变化类别多样、目标变化检测时存在漏检和边界识别粗糙问题,提出了一种基于Siam-UNet++深度神经网络的高分辨率遥感影像建筑物变化检测算法。该算法采用UNet++作为骨干提取网络,在其编码器部分应用Siam-diff(Siamese-difference)结构提取前后两时序图像的变化特征,并在解码阶段的上采样和横向跳跃路径连接之后引入注意力机制,突出建筑物变化的特征,抑制网络对其他类别特征的学习;同时使用多边输出融合(multiple side-output fusion,MSOF)策略加权融合不同语义层次的特征信息,提高了建筑物变化检测的精度;最后采取滑窗的方法对大尺度遥感影像进行预测,减少拼接过程中变化结果图产生的空洞图斑。在大型建筑物变化检测数据集上的实验结果表明,该算法有效提升了建筑物的变化检测效果。 Aiming at the problems of complex background,variety of change types,missing detection and rough boundary recognition in high-resolution remote sensing image of the same region,this paper proposed a high-resolution remote sensing image building change detection algorithm based on Siam-UNet++network.The algorithm used UNet++as the backbone extraction network.In the encoder phase,it applied the Siam-diff structure to extract the change features of the two sequential images,and employed the attention mechanism after the up sampling and lateral jump path connection in the decoding stage to highlight the building change features and inhibit the network learning from other types of features.Meanwhile,it used the MSOF strategy to weight and fuse feature information of different semantic levels,which improved the accuracy of building change detection.Finally,it adopted a sliding window method to predict large-scale remote sensing images,reducing the hole pattern generated by the change result map during the splicing process.The experimental results demonstrate that proposed algorithm shows better performance than other models.
作者 朱节中 陈永 柯福阳 张果荣 Zhu Jiezhong;Chen Yong;Ke Fuyang;Zhang Guorong(School of Binjiang,Nanjing University of Information Science&Technology,Wuxi Jiangsu 214105,China;School of Automation,Nanjing University of Information Science&Technology,Nanjing 210044,China;School of Remote Sensing&Surveying Engineering,Nanjing University of Information Science&Technology,Nanjing 210044,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第11期3460-3465,共6页 Application Research of Computers
基金 江苏省“六大人才高峰”高层次人才项目(XYDDX-045) 西宁市科技计划项目(2019-Y-12) 国家级大学生创新训练项目(201910300047) 无锡市现代产业发展资金项目(003231911161)。
关键词 深度学习 Siam-UNet++ 变化检测 注意力机制 多边输出融合 deep learning Siam-UNet++ change detection attention mechanism multiple side-output fusion strategy
  • 相关文献

参考文献10

二级参考文献65

共引文献537

同被引文献125

引证文献15

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部