期刊文献+

幂零元的单边零可交换性

One-sided Commutativity of Nilpotent Elements at Zero
下载PDF
导出
摘要 定义研究左和右幂零可逆环,这两类环与可逆环的单边幂零结构密切相关,是CNZ环的一个真子类。证明环R是可逆环当且仅当R是半素的左幂零可逆环。研究左幂零可逆环的扩张性质,主要证明了以下结果:R是左幂零可逆环当且仅当A(R,α)是左幂零可逆环;Armendariz环R是左幂零可逆环当且仅当R[x]是左幂零可逆环;若右Ore环R是左幂零可逆的,则R的经典右商环Q是左幂零可逆的。 The concepts of left and right nilpotent reversible rings are defined and studied,which are closely related to the one-sided nilpotent structures of reversible rings,and are a proper subclass of CNZ rings.It is shown that a ring R is reversible if and only if R is semiprime and left nilpotent reversible ring.Various extension properties of left nilpotent reversible rings are studied,the following results are mainly proved:Aring R is left nilpotent reversible if and only if A(R,α)is left nilpotent reversible.If R is an Armendariz ring,then R is left nilpotent reversible if and only if R[x]is left nilpotent reversible.If a right Ore ring R is a left nilpotent reversible ring,then its classical right quotient ring Q is left nilpotent reversible.
作者 何萍 赵良 HE Ping;ZHAO Liang(School of Mathematics&Physics,Anhui University of Technology,Maanshan 243032,China)
出处 《安徽工业大学学报(自然科学版)》 CAS 2021年第4期444-448,共5页 Journal of Anhui University of Technology(Natural Science)
基金 江苏省自然科学基金项目(BK20181406)。
关键词 左幂零可逆环 右幂零可逆环 CNZ环 幂零元 left nilpotent reversible ring right nilpotent reversible ring CNZ rings nilpotent elements
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部