期刊文献+

Dullin-Gottwald-Holm方程尖峰孤立子附近解的稳定性

Orbital stability of solutions near the peakons for Dullin-Gottwald-Holm equation
下载PDF
导出
摘要 研究Dullin-Gottwald-Holm(DGH)方程Cauchy问题在尖峰孤立子附近的解的轨道稳定性.运用伪共形变换方法,对DGH方程Cauchy问题在尖峰孤立波附近的解做如下分解:λ^(1/2)(t)u(t,y+x(t))=ε(t,y)+Q(y).通过对控制参数λ(t),x(t)的讨论,证明了余项ε(t,y)的稳定性;进一步得到了DGH方程Cauchy问题尖峰孤立波及其附近解的轨道稳定性.结果表明:若初值0与u 0在H 1意义下充分接近,则在时间T内初值对应的解仍任意接近,即(t,·+r 2)-u(t,·+r 1)H^(1)<ω,t∈[0,T). The orbital stability of solutions around the peakons for Cauchy problem of the Dullin-Gottwald-Holm(DGH)equation is studied in this paper.Applying the method of pseudo-conformal transformation,the solution of DGH equation near the peakon is decomposed into following form:λ^(1/2)(t)u(t,y+x(t))=ε(t,y)+Q(y).By discussing the modulation parametersλ(t)and x(t),the stability of residual termε(t,y)is proved.Furthermore,the orbital stability of peakon solutions and near the peakons of Cauchy problem for DGH equation are obtained.The stability theorem indicates that,if the initial data 0 is sufficiently close to u 0 in H 1,then two corresponding solutions remain close within time T,that is(t,·+r 2)-u(t,·+r 1)H^(1)<ω,t∈[0,T).
作者 丁丹平 韩希凤 DING Dan-ping;HAN Xi-feng(School of Mathematical Sciences,Jiangsu University,Zhenjiang 212013,Jiangsu,China)
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2021年第6期18-24,共7页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11371175)。
关键词 Dullin-Gottwald-Holm(DGH)方程 尖峰孤立波解 轨道稳定性 伪共形变换 Dullin-Gottwald-Holm(DGH)equation peakons orbital stability pseudo-conformal transformation
  • 相关文献

参考文献1

二级参考文献15

  • 1DULLIN H,GOTTWALD G,HOLM D.An integrable shallow water equation with linear and nonlinear dispersion[J].Phy Rev Lett,2001,87:1945-1948.
  • 2BONA J L,SMITH R.The initial-value problem for the Korteweg-de Vries equation.Philos[J].Trans Roy Soc London Ser A,1975,278(1287):555-601.
  • 3KATO T.On the Korteweg-de Vries equation[J].Manuscripta Math,1979,28(1-3):89-99.
  • 4WHITHAN G B.Linear and Nonlinear Waves[M].New York:Wiley,1974.
  • 5BOURGAIN J.Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations II:The KdV equation[J].Geom Funct Anal,1993(3):209-262.
  • 6KENIG C,PONCE G,VEGA L.Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[J).Comm Pure Appl Math,1993,46:527-620.
  • 7TAO T.Low-regularity global solutions to nonlinear dispersive equations[C]// Surveys in Analysis and Operator Theory Proc Centre Math Appl Austral Nat Univ 40.Canberra:Austral Nat Univ,2002:19-48.
  • 8DRAZIN P G,JOHNSON R S.Solitons:An Introduction[M].Cambridge:Cambridge University Press,1989.
  • 9ZHOU Y,GUO Z G.Blow up and propagation speed of solutions to the DGH equation[J].Discrete and Continuous Dynamical Systems Series B,2009(12):657-670.
  • 10KATO T.Quasi-Linear equations of evolution,with applications to partial differential equation[M]// Spectral Theory and Differential Equation:Lecture Notes in Math 448.Berlin:Springer verlag,1975:25-70.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部