期刊文献+

Single-metal-atom site with high-spin state embedded in defective BN nanosheet promotes electrocatalytic nitrogen reduction 被引量:3

原文传递
导出
摘要 Single-atom catalysts (SACs) especially supported on two-dimensional nitrogen-doped carbon substrate have been widely reported to be able to effectively promote electrocatalytic N_(2) reduction reaction (eNRR). The precise design of single-metal-atom active site (SMAS) calls for fundamental understanding of its working mechanism for enhanced eNRR performance. Herein, by means of density functional theory calculations, we theoretically investigate the eNRR performance of nine prototypical SMAS, namely, MN_(2)B_(2) (M: transition metals of IIIB, IVB and VB groups) which comprises of asymmetric ligands of N_(2)B_(2) embedded in defective BN nanosheet. Our results reveal the significant role of spin state of SMAS in tuning the potential-determining steps of eNRR, in which MN_(2)B_(2) site with higher spin magnetic moment (μ) is beneficial to reducing limiting potentials (U_(L)) of eNRR. Specially, CrN_(2)B_(2) (μ = 4μB), VN_(2)B_(2) (μ = 3μB) and MoN_(2)B_(2) (μ = 2μB) demonstrate high activity and selectivity to eNRR. The asymmetric ligands of N_(2)B_(2) are deemed to be superior over mono-symmetric ligands. More importantly, our results demonstrate that breaking (or deviating) of the scaling relations between key N-containing intermediates (*N_(2)H/*N_(2) and *NH2/*N_(2)) on MN_(2)B_(2) can be realized by enhancing spin state of SMAS which renders the active site a balanced N-affinity critical for efficient eNRR. This observation is validated by the calculated Sabatier volcano-shape relation between eNRR limiting potentials and N_(2) adsorption energy. Our study develops the guidance for catalyst design to boost eNRR performance by tuning the spin state of an active site.
作者 Cong Fang Wei An
出处 《Nano Research》 SCIE EI CSCD 2021年第11期4211-4219,共9页 纳米研究(英文版)
基金 This work was supported by the National Natural Science Foundation of China(No.21673137) the Science and Technology Commission of Shanghai Municipality(No.16ZR1413900) W.A.gratefully acknowledges the support from the Program for Top Talents in Songjiang District of Shanghai.The DFT calculations were performed using resources of the Center for Functional Nanomaterials,which is a U.S.DOE Office of Science Facility,and the Scientific Data and Computing Center,a component of the Computational Science Initiative,at Brookhaven National Laboratory under Contract No.DE-SC0012704.
  • 相关文献

参考文献4

二级参考文献3

共引文献43

同被引文献41

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部