期刊文献+

固体氧化物燃料电池力学性能变化规律和断裂模式研究 被引量:1

Mechanical Properties and Fracture Mode of Anode Supported Solid Oxide Fuel Cell
原文传递
导出
摘要 采用同轴环施力法研究了单电池还原前后抗弯强度的Weibull模量与其厚度之间的关联性。结果表明:对应1.1、0.9 mm与0.7 mm 3个厚度,Ni O-YSZ(氧化钇稳定的氧化锆)阳极支撑单电池的Weibull模量分别为4.56、4.78与6.16,随着样品厚度降低,Weibull模量逐渐增加,这与阳极内部缺陷数量减少相对应;还原之后Ni-YSZ阳极支撑单电池的Weibull模量分别提高至8.66、12.49与9.37,塑性Ni相的形成是抑制裂纹扩展的主要原因,其中厚度为0.9mm的单电池呈现最佳的综合性能,对应特征强度为122.9 MPa。样品裂纹源主要源自于阳极支撑体的内部缺陷与Ni颗粒团聚,依此可以通过不同裂纹源的类型与3种断裂模式解释不同厚度单电池力学性能的变化规律。 The relationship between the Weibull modulus of bending strength and its thickness of single cell before and after reduction was investigated by a coaxial ring force method.The Weibull modulus of NiO-YSZ anode supported cell is 4.56,4.78 and 6.16 for the thickness of 1.1 mm,0.9 mm and 0.7 mm,respectively.The Weibull modulus increases gradually with the decrease of sample thickness due to the reduced internal defect number of anode.The Weibull modulus of Ni-YSZ anode supported cell increases to 8.66,12.49 and 9.37,respectively,since a plastic Ni phase inhibits the crack propagation.The single cell with a thickness of 0.9 mm shows a greater performance with the corresponding bending strength of 122.9 MPa.The crack sources of the sample mainly come from the internal defects of the anode and the agglomeration of Ni particles.Based on the experimental results,the influence of single cell thickness on its mechanical properties can be demonstrated at different crack source types and fracture modes.
作者 胡赛 金鑫 王傲 耿佳琦 池波 蒲健 HU Sai;JIN Xin;WANG Ao;GENG Jiaqi;CHI Bo;PU Jian(School of Materials Science and Engineering,State Key Laboratory of Material Processing and Die&Mould Technology,Huazhong University of Science and Technology,Wuhan 430074,China;Wuhan Institute of Marine Electric propulsion,Wuhan 430064,China)
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2021年第10期2180-2188,共9页 Journal of The Chinese Ceramic Society
基金 国家重点研发计划(2020YFB1506304) 国家自然科学基金(52072135)。
关键词 固体氧化物燃料电池 Weibull模量 抗弯强度 断裂模式 裂纹源 solid oxide fuel cell Weibull modulus bending strength fracture mode crack source
  • 相关文献

参考文献9

二级参考文献90

  • 1汪峰,缪馥星,官万兵.不同还原条件下制备的固体氧化物燃料电池支撑阳极Ni-YSZ的性能[J].硅酸盐学报,2015,43(5):650-656. 被引量:3
  • 2周利,程谟杰,衣宝廉.管型固体氧化物燃料电池技术进展[J].电池,2005,35(1):63-65. 被引量:8
  • 3LARMINIE J, DICKS A. Solid Oxide Fuel Cells Explained [M]. England: John Wiley & Sons Ltd, 2003: 207-226.
  • 4BADWAL S, GIDDEY S, CIACCHI F, et al. Research and developments in hydrogen technologies [J]. Adv Appl Ceram, 2007, 106(1/2): 40-44.
  • 5ZOGG 1L SRIRAMULU S, CARLSON E, et al. Using solid-oxide fuel cells for distributed generation [J]. ASHRAE J, 2006, 48:116-118.
  • 6SINGHAL S C. Solid oxide fuel cells [J]. Electrochem Soc Interface, 2007, 16(4): 41-44.
  • 7BUJALSKI W, DIKWAL C M, KENDALL K. Cycling of three solid oxide fuel cell types [J]. J Power Sources, 2007, 171: 96-100.
  • 8BRANDON N E Materials engineering for solid oxide fuel cell technology [J]. Mater Sci Forum, 2007, 539-543: 20-27.
  • 9SARKAR P, YAMARTE L, JOHANSON L. Micro solid oxide fuel cell for remote power applications [J]. Ceram Eng Sci Proc, 2007, 28(4): 59~4.
  • 10ZHONG H, MATSUMOTO H, ISHIHARA T, et al. Development of honeycomb-type solid oxide fuel cell consisting of LaGaO3 electrolyte [J]. Mater Sci Forum, 2007, 544/545: 969-972.

共引文献67

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部