摘要
本文计算一类Moisio型指数和.设2模r^(m)的阶为(r-1)/2·r^(m-1),其中r为奇素数, r≡1 (mod 4),m为正整数.设q=2((r-1)/2·r^(m-1)), Fq为q元有限域,χ为Fq到复数的经典加法特征.本文将给出指数和S(a, b)=∑x∈Fqχ(ax(q-1)/rm+bx)(a, b∈Fq)的值.特别地,本文运用有限域上椭圆曲线的有理点,计算一类S(a)=r^(m)/(q-1)S(a, 0)的值.
In this paper, we compute evaluations on a class of Moisio’s type exponential sums. Let 2 be of order (r-1)/2· r^(n-1) modulo 2^(m),where r is an odd prime, r ≡ 1(mod 4), and m is a positive integer. Let q=2((r-1)/2·r^(m-1)), Fq be the finite field with q elements, and χ be the canonical additive character from Fq to the complex number field.We shall give evaluations of exponential sums S(a, b)=∑x∈Fqχ(ax(q-1)/rm+bx),a, b∈Fq. Specially, we use the rational points of an elliptic curve over a finite field to compute evaluations of exponential sums S(a)=r^(m)/(q-1)S(a, 0).
作者
李凤伟
吴严生
岳勤
Fengwei Li;Yansheng Wu;Qin Yue
出处
《中国科学:数学》
CSCD
北大核心
2021年第10期1627-1634,共8页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:61772015)资助项目。
关键词
特征和
分圆数
椭圆曲线有理点
character sum
cyclotomic number
rational points of an elliptic curve