摘要
以不同钢级煤气管道为研究对象,借助Matlab软件,通过建立BP、GA-BP和带动量项BP人工神经网络数学模型,对其进行剩余强度预测,并与真实剩余强度进行对比分析;通过引入相对误差和压力比等参数,考察其准确性和适用性。结果表明,从运行时间和最大均方误差角度出发,GA-BP模型是最优的方法;从相对误差和压力比出发,GA-BP模型准确度最高,适用性最好。所得结论对煤气管道的正常运行有一定的指导意义。
With the help of Matlab software, the residual strength of gas pipeline with different steel grades is predicted by establishing BP,GA-BP and driving quantity TERM-BP artificial neural network mathematical model, and compared with the real residual strength.The relative error and pressure ratio are introduced to test the accuracy and applicability.The results show that GA-BP model is the best method in terms of running time and maximum mean square error.From the relative error and pressure ratio, GA-BP model has the highest accuracy and the best applicability.The conclusion has a certain guiding significance for the normal operation of gas pipeline.
作者
王战辉
张智芳
李红伟
闫君芝
WANG Zhanhui;ZHANG Zhifang;LI Hongwei;YAN Junzhi(School of Chemistry and Chemical Engineering,Yulin University,Yulin719000,China;Key Laboratory of Low Metamorphic Coal Clean Utilization,Yulin719000,China)
出处
《化工科技》
CAS
2021年第5期1-5,67,共6页
Science & Technology in Chemical Industry
基金
国家自然科学基金项目(21763030)
陕西省创新能力支撑计划项目(2020TD-032)
陕西省教育厅重点科学研究计划(重点实验室)项目(19JS069)
榆林市2019年科技计划项目(2019-83-7,2019-102-1)
榆林高新区科技计划项目(CXY-2020-02)。
关键词
煤气管道
剩余强度
神经网络
数学模型
Gas pipeline
Residual strength
Neural network
Mathematical model