摘要
在雾霾等特殊气象条件下,在室外拍摄到的图像质量将会存在不同程度的降低,这不仅仅影响到户外摄影,道路监控等工作的开展,更可能对公共交通以及无人驾驶等造成安全隐患。本综述将会讨论在几种常规的基于图像增强去雾算法的基础上,探究基于图像复原的去雾算法以及近年来新兴的基于深度学习的去雾算法与传统技术的原理差别及利弊分析。
In specific weather condition like haze,the quality of images taken outdoors will have varying degrees of descent.This will not only affect the outdoor photography and road supervision,but also put threat in the safety of public traffic and self driving.Based on several common methods using image enhancement and defogging,we are talking about the differences between the traditional defogging approach and the defogging approach based on image restoration as well as another emerging approach based on deep learning.Meanwhile we will discuss the pros and cons of them.
作者
强明睿
李泽宇
夏明辉
Qiang Mingrui;Li Zeyu;Xia Minghui(Jiangsu University College of computer science and Communication Engineering,Jiangsu Zhenjian 212013)
出处
《长江信息通信》
2021年第9期34-36,共3页
Changjiang Information & Communications
关键词
去雾算法
雾天图像增强
图像复原
深度学习
Defogging algorithm
Fog image enhancement
image restoration
Deep learning