期刊文献+

Hidden Markov Models:Inverse Filtering,Belief Estimation and Privacy Protection

原文传递
导出
摘要 A hidden Markov model(HMM)comprises a state with Markovian dynamics that can only be observed via noisy sensors.This paper considers three problems connected to HMMs,namely,inverse filtering,belief estimation from actions,and privacy enforcement in such a context.First,the authors discuss how HMM parameters and sensor measurements can be reconstructed from posterior distributions of an HMM filter.Next,the authors consider a rational decision-maker that forms a private belief(posterior distribution)on the state of the world by filtering private information.The authors show how to estimate such posterior distributions from observed optimal actions taken by the agent.In the setting of adversarial systems,the authors finally show how the decision-maker can protect its private belief by confusing the adversary using slightly sub-optimal actions.Applications range from financial portfolio investments to life science decision systems.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第5期1801-1820,共20页 系统科学与复杂性学报(英文版)
基金 the Wallenberg AI Autonomous Systems and Software Program(WASP) the Swedish Research Council and the Swedish Research Council Research Environment NewLEADS under contract 2016-06079。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部