期刊文献+

Distributed Gradient Tracking Methods with Finite Data Rates 被引量:1

原文传递
导出
摘要 This paper studies the distributed optimization problem over an undirected connected graph subject to digital communications with a finite data rate,where each agent holds a strongly convex and smooth cost function.The agents need to cooperatively minimize the average of all agents’cost functions.Each agent builds an encoder/decoder pair that produces transmitted messages to its neighbors with a finite-level uniform quantizer,and recovers its neighbors’states by a recursive decoder with received quantized signals.Combining the adaptive encoder/decoder scheme with the gradient tracking method,the authors propose a distributed quantized algorithm.The authors prove that the optimization can be achieved at a linear rate,even when agents communicate at 1-bit data rate.Numerical examples are also conducted to illustrate theoretical results.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第5期1927-1952,共26页 系统科学与复杂性学报(英文版)
  • 相关文献

参考文献3

二级参考文献2

共引文献28

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部