摘要
考虑三角矩阵环上的Gorenstein AC-投射模.设T=(A 0 U B)是三角矩阵环,其中A和B是环,U是(B,A)-双模.证明:若BU是平坦模,U A是有限生成投射模,则左T-模M=(M_(1) M_(2))φM[KG*8]是Gorenstein AC-投射模当且仅当M 1是Gorenstein AC-投射左A-模,φM:U AM 1→M 2是单同态,且CokerφM是Gorenstein AC-投射左B-模.
We consider Gorenstein AC-projective modules over triangular matrix rings.Let T=(A 0 U B) be a triangular matrix rings,where A and B are rings and U is a(B,A)-bimodule.We prove that if BU is a flat module and U A is a finitely generated projective module,then a left T-module (M_(1) M_(2))φM is a Gorenstein AC-projective module if and only if M 1 is a Gorenstein AC-projective left A-module,φM:U AM 1→M 2 is a monomorphism,and CokerφM is a Gorenstein AC-projective left B-module.
作者
牟婷
王淼
王占平
MU Ting;WANG Miao;WANG Zhanping(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China;Department of Mathematics,Shaoxing College of Arts and Sciences,Shaoxing 312000,Zhejiang Province,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2021年第6期1361-1367,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11561061).