期刊文献+

改性碳化钛阴极的光催化系统还原CO_(2)研究

CO_(2) reduction in photocatalytic system with modified Ti_(3)C_(2) cathode
下载PDF
导出
摘要 采用氢氟酸(HF)侵蚀钛碳化铝(Ti_(3)AlC_(2))的方法制备了碳化钛(Ti_(3)C_(2))催化剂,对其进行表面基团碱化后,作为光催化还原二氧化碳(CO_(2))的阴极催化剂。采用X射线衍射(XRD)和扫描电子显微镜(SEM)对其表面进行表征。在以二氧化钛纳米管(TiO_(2)-NTs)为光阳极的光催化燃料电池中进行CO_(2)还原性测试。测试发现,经表面碱化的Ti_(3)C_(2)催化剂的CO_(2)还原性能明显提高,但由于大量H^(+)的存在导致循环稳定性较差。通过引入氟基疏水层来增强操作稳定性,该疏水层使得催化剂与水溶液的接触减少,抑制H^(+)对表面碱性基团的破坏,使系统能够高效稳定运行。 Titanium carbide(Ti_(3)C_(2))catalyst was prepared by hydrofluoric acid(HF)etching titanium aluminum carbide(Ti_(3)AlC_(2)),which was used as cathode catalyst for photocatalytic reduction of carbon dioxide(CO_(2))after alkalization of surface groups.The surface properties of cathode catalyst were investigated by X-ray diffraction(XRD)and scanning electron microscope(SEM).CO_(2)reducibility was tested in photocatalytic fuel cells with titanium dioxide nanotubes(TiO_(2)-NTs)as photoanode.It was found that the reduction performance of Ti_(3)C_(2)catalyst after surface alkalization was significantly improved,but the cycle stability was poor due to the presence of a large amount of hydrogen ions(H^(+)).Operational stability was enhanced via the introduction of a fluorine-based hydrophobic layer,which reduced the contact between the catalyst and the aqueous solution,and inhibited the damage of H^(+) to the surface alkaline groups,and enabled the system to run smoothly.
作者 张军 宋亚文 吕帅 郑季历 杨朋林 Zhang Jun;Song Yawen;Lv Shuai;Zheng Jili;Yang Penglin(School of Energy and Power Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002)
出处 《化工新型材料》 CAS CSCD 北大核心 2021年第10期150-153,158,共5页 New Chemical Materials
基金 郑州轻工业学院博士启动基金(2015BSJJ001) 低品位能源利用技术与系统重点实验室建设项目(LLEUTS-202015)。
关键词 碳化钛 光催化二氧化碳还原 循环稳定性 疏水 Ti3C2 photocatalytic CO_(2)reduction cycle stability hydrophobicity
  • 相关文献

参考文献2

二级参考文献20

  • 1FUnSHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [ J]. Nature, 1972, 238(5358) : 37-38.
  • 2INOUE T, FUnSHIMA A, KONISm S, HONDA K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979,277(5698): 637-638.
  • 3NA V AL6N S, DHAKSHINAMOORTHY A, ALVARO M, GARCIA H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides[I]. ChemSusChem, 2013, 6(4): 562-577.
  • 4HABISREUTINGER S N, SCHMIDT-MENDE L, STOLARCZYK J K. Photocatalytic reduction of CO2 on Ti02 and other semiconductors [I]. Aogew Chern Int Ed, 2013, 52(29): 7372-7408.
  • 5ZHAI Q G, XlE S J , FAN W Q, ZHANG Q H, WANG Y, DENG W P, WANG Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(1) oxide co-catalysts with a core-shell structure[J]. Aogew Chern Int Ed, 2013, 52(22): 5776-5779.
  • 6TV W G, ZHOU Y, ZOU Z G. Photoconversion , Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects[J]. Adv Mat, 2014, 26(27): 45984598.
  • 7IIZUKA K, W ATO T, MISEKI Y, SAITO K, KUDO A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4 Ti4 O,s (A =Ca, Sr, and Ba) using water as a reducing reagent] J]. J Am Chern Soc, 2011 , 133(51) : 20863-20868.
  • 8ZHOU H, GUO J J, LI P, FAN T X, ZHANG D, YE J H. Leaf-architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels[J]. Sci Rep, 2013, 3: 1667.
  • 9HE J H, ICHINOSE I, KUNlT AKE T, NAKAO A. In situ synthesis of noble metal nanopartic1es in ultrathin Ti02 -Gel films by a combination of ion-exchange and reduction processes[J]. Langmuir, 2002, 18(25): 10005-10010.
  • 10LIU Z W, HOU W B, PAVASKAR P, A YKOL M, CRONIN S B. Plasmon resonant enhancement of photocatalytic water splitting under visible iIIumination[J]. Nano Lett, 2011,11(3): 1111-1116.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部